• 吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train


    import tensorflow as tf
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    LAYER1_NODE = 500
    
    def get_weight_variable(shape, regularizer):
        weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
        if(regularizer != None): 
            tf.add_to_collection('losses', regularizer(weights))
        return weights
    
    
    def inference(input_tensor, regularizer):
        with tf.variable_scope('layer1'):
            weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
            biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
    
        with tf.variable_scope('layer2'):
            weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
            biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
            layer2 = tf.matmul(layer1, weights) + biases
        return layer2
    # 1. 定义神经网络的参数。
    BATCH_SIZE = 100
    LEARNING_RATE_BASE = 0.8
    LEARNING_RATE_DECAY = 0.99
    REGULARIZATION_RATE = 0.0001
    TRAINING_STEPS = 3000
    MOVING_AVERAGE_DECAY = 0.99
    # 2. 定义训练的过程并保存TensorBoard的log文件。
    def train(mnist):
        #  输入数据的命名空间。
        with tf.name_scope('input'):
            x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
            y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
        regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
        y = inference(x, regularizer)
        global_step = tf.Variable(0, trainable=False)
        
        # 处理滑动平均的命名空间。
        with tf.name_scope("moving_average"):
            variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
            variables_averages_op = variable_averages.apply(tf.trainable_variables())
       
        # 计算损失函数的命名空间。
        with tf.name_scope("loss_function"):
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
            cross_entropy_mean = tf.reduce_mean(cross_entropy)
            loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
        
        # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
        with tf.name_scope("train_step"):
            learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True)
    
            train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    
            with tf.control_dependencies([train_step, variables_averages_op]):
                train_op = tf.no_op(name='train')
        
        writer = tf.summary.FileWriter("F:\temp\log", tf.get_default_graph())
        # 训练模型。
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
    
                if(i % 1000 == 0):
                    # 配置运行时需要记录的信息。
                    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                    # 运行时记录运行信息的proto。
                    run_metadata = tf.RunMetadata()
                    _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys},options=run_options, run_metadata=run_metadata)
                    writer.add_run_metadata(run_metadata=run_metadata, tag=("tag%d" % i), global_step=i)
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                else:
                    _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
        writer.close()
    # 3. 主函数。
    def main(argv=None): 
        mnist = input_data.read_data_sets("F:\TensorFlowGoogle\201806-github\datasets\MNIST_data", one_hot=True)
        train(mnist)
    
    if __name__ == '__main__':
        main()
  • 相关阅读:
    ES6相关概念及新增语法
    正则表达式
    递归
    高阶函数和闭包
    严格模式
    this指向
    递归
    严格模式
    函数内部的this指向
    函数的定义和调用
  • 原文地址:https://www.cnblogs.com/tszr/p/12097871.html
Copyright © 2020-2023  润新知