• 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据


    #We import libraries for linear algebra, graphs, and evaluation of results
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import roc_curve, roc_auc_score
    from scipy.ndimage.filters import uniform_filter1d
    #Keras is a high level neural networks library, based on either tensorflow or theano
    from keras.models import Sequential, Model
    from keras.layers import Conv1D, MaxPool1D, Dense, Dropout, Flatten, BatchNormalization, Input, concatenate, Activation
    from keras.optimizers import Adam
    INPUT_LIB = 'F:\kaggleDataSet\kepler-labelled\'
    raw_data = np.loadtxt(INPUT_LIB + 'exoTrain.csv', skiprows=1, delimiter=',')
    x_train = raw_data[:, 1:]
    y_train = raw_data[:, 0, np.newaxis] - 1.
    raw_data = np.loadtxt(INPUT_LIB + 'exoTest.csv', skiprows=1, delimiter=',')
    x_test = raw_data[:, 1:]
    y_test = raw_data[:, 0, np.newaxis] - 1.
    del raw_data
    x_train = ((x_train - np.mean(x_train, axis=1).reshape(-1,1))/ np.std(x_train, axis=1).reshape(-1,1))
    x_test = ((x_test - np.mean(x_test, axis=1).reshape(-1,1)) / np.std(x_test, axis=1).reshape(-1,1))
    x_train = np.stack([x_train, uniform_filter1d(x_train, axis=1, size=200)], axis=2)
    x_test = np.stack([x_test, uniform_filter1d(x_test, axis=1, size=200)], axis=2)
    model = Sequential()
    model.add(Conv1D(filters=8, kernel_size=11, activation='relu', input_shape=x_train.shape[1:]))
    model.add(MaxPool1D(strides=4))
    model.add(BatchNormalization())
    model.add(Conv1D(filters=16, kernel_size=11, activation='relu'))
    model.add(MaxPool1D(strides=4))
    model.add(BatchNormalization())
    model.add(Conv1D(filters=32, kernel_size=11, activation='relu'))
    model.add(MaxPool1D(strides=4))
    model.add(BatchNormalization())
    model.add(Conv1D(filters=64, kernel_size=11, activation='relu'))
    model.add(MaxPool1D(strides=4))
    model.add(Flatten())
    model.add(Dropout(0.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.25))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    def batch_generator(x_train, y_train, batch_size=32):
        """
        Gives equal number of positive and negative samples, and rotates them randomly in time
        """
        half_batch = batch_size // 2
        x_batch = np.empty((batch_size, x_train.shape[1], x_train.shape[2]), dtype='float32')
        y_batch = np.empty((batch_size, y_train.shape[1]), dtype='float32')
        
        yes_idx = np.where(y_train[:,0] == 1.)[0]
        non_idx = np.where(y_train[:,0] == 0.)[0]
        
        while True:
            np.random.shuffle(yes_idx)
            np.random.shuffle(non_idx)
        
            x_batch[:half_batch] = x_train[yes_idx[:half_batch]]
            x_batch[half_batch:] = x_train[non_idx[half_batch:batch_size]]
            y_batch[:half_batch] = y_train[yes_idx[:half_batch]]
            y_batch[half_batch:] = y_train[non_idx[half_batch:batch_size]]
        
            for i in range(batch_size):
                sz = np.random.randint(x_batch.shape[1])
                x_batch[i] = np.roll(x_batch[i], sz, axis = 0)
         
            yield x_batch, y_batch
    #Start with a slightly lower learning rate, to ensure convergence
    model.compile(optimizer=Adam(1e-5), loss = 'binary_crossentropy', metrics=['accuracy'])
    hist = model.fit_generator(batch_generator(x_train, y_train, 32), 
                               validation_data=(x_test, y_test), 
                               verbose=0, epochs=5,
                               steps_per_epoch=x_train.shape[1]//32)
    #Then speed things up a little
    model.compile(optimizer=Adam(4e-5), loss = 'binary_crossentropy', metrics=['accuracy'])
    hist = model.fit_generator(batch_generator(x_train, y_train, 32), 
                               validation_data=(x_test, y_test), 
                               verbose=2, epochs=40,
                               steps_per_epoch=x_train.shape[1]//32)

    plt.plot(hist.history['loss'], color='b')
    plt.plot(hist.history['val_loss'], color='r')
    plt.show()
    plt.plot(hist.history['acc'], color='b')
    plt.plot(hist.history['val_acc'], color='r')
    plt.show()

    non_idx = np.where(y_test[:,0] == 0.)[0]
    yes_idx = np.where(y_test[:,0] == 1.)[0]
    y_hat = model.predict(x_test)[:,0]
    plt.plot([y_hat[i] for i in yes_idx], 'bo')
    plt.show()
    plt.plot([y_hat[i] for i in non_idx], 'ro')
    plt.show()

    y_true = (y_test[:, 0] + 0.5).astype("int")
    fpr, tpr, thresholds = roc_curve(y_true, y_hat)
    plt.plot(thresholds, 1.-fpr)
    plt.plot(thresholds, tpr)
    plt.show()
    crossover_index = np.min(np.where(1.-fpr <= tpr))
    crossover_cutoff = thresholds[crossover_index]
    crossover_specificity = 1.-fpr[crossover_index]
    print("Crossover at {0:.2f} with specificity {1:.2f}".format(crossover_cutoff, crossover_specificity))
    plt.plot(fpr, tpr)
    plt.show()
    print("ROC area under curve is {0:.2f}".format(roc_auc_score(y_true, y_hat)))

    false_positives = np.where(y_hat * (1. - y_test) > 0.5)[0]
    for i in non_idx:
        if y_hat[i] > crossover_cutoff:
            print(i)
            plt.plot(x_test[i])
            plt.show()

  • 相关阅读:
    第八周
    请停止使用strncpy
    WER设置
    如何在dump文件里找到真正的类this指针
    Visual Studio /analyze不好之处---漏报(四)
    Visual Studio /analyze不好之处---漏报(三)
    Visual Studio /analyze不好之处---漏报(二)
    Visual Studio /analyze不好之处(一)
    Visual Studio /analyze的好处
    符号杂谈
  • 原文地址:https://www.cnblogs.com/tszr/p/11258031.html
Copyright © 2020-2023  润新知