• 吴裕雄--天生自然 python数据分析:基于Keras使用CNN神经网络处理手写数据集


    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.image as mpimg
    import seaborn as sns
    %matplotlib inline
    
    np.random.seed(2)
    
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import confusion_matrix
    import itertools
    
    from keras.utils.np_utils import to_categorical # convert to one-hot-encoding
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
    from keras.optimizers import RMSprop
    from keras.preprocessing.image import ImageDataGenerator
    from keras.callbacks import ReduceLROnPlateau
    
    
    sns.set(style='white', context='notebook', palette='deep')
    # Load the data
    train = pd.read_csv("F:\kaggleDataSetMNSI\train.csv")
    test = pd.read_csv("F:\kaggleDataSetMNSI\test.csv")
    Y_train = train["label"]
    
    # Drop 'label' column
    X_train = train.drop(labels = ["label"],axis = 1) 
    
    # free some space
    del train 
    
    g = sns.countplot(Y_train)
    
    Y_train.value_counts()

    # Check the data
    X_train.isnull().any().describe()

    test.isnull().any().describe()

    # Normalize the data
    X_train = X_train / 255.0
    test = test / 255.0
    # Reshape image in 3 dimensions (height = 28px, width = 28px , canal = 1)
    X_train = X_train.values.reshape(-1,28,28,1)
    test = test.values.reshape(-1,28,28,1)
    # Encode labels to one hot vectors (ex : 2 -> [0,0,1,0,0,0,0,0,0,0])
    Y_train = to_categorical(Y_train, num_classes = 10)
    # Set the random seed
    random_seed = 2
    # Split the train and the validation set for the fitting
    X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed)
    # Some examples
    g = plt.imshow(X_train[0][:,:,0])

    # Set the CNN model 
    # my CNN architechture is In -> [[Conv2D->relu]*2 -> MaxPool2D -> Dropout]*2 -> Flatten -> Dense -> Dropout -> Out
    
    model = Sequential()
    
    model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', 
                     activation ='relu', input_shape = (28,28,1)))
    model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', 
                     activation ='relu'))
    model.add(MaxPool2D(pool_size=(2,2)))
    model.add(Dropout(0.25))
    
    
    model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', 
                     activation ='relu'))
    model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', 
                     activation ='relu'))
    model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
    model.add(Dropout(0.25))
    
    
    model.add(Flatten())
    model.add(Dense(256, activation = "relu"))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation = "softmax"))
    # Define the optimizer
    optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
    # Compile the model
    model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
    # Set a learning rate annealer
    learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', 
                                                patience=3, 
                                                verbose=1, 
                                                factor=0.5, 
                                                min_lr=0.00001)
    epochs = 1 # Turn epochs to 30 to get 0.9967 accuracy
    batch_size = 86
    # Without data augmentation i obtained an accuracy of 0.98114
    history = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, 
             validation_data = (X_val, Y_val), verbose = 2)

    # With data augmentation to prevent overfitting (accuracy 0.99286)
    
    datagen = ImageDataGenerator(
            featurewise_center=False,  # set input mean to 0 over the dataset
            samplewise_center=False,  # set each sample mean to 0
            featurewise_std_normalization=False,  # divide inputs by std of the dataset
            samplewise_std_normalization=False,  # divide each input by its std
            zca_whitening=False,  # apply ZCA whitening
            rotation_range=10,  # randomly rotate images in the range (degrees, 0 to 180)
            zoom_range = 0.1, # Randomly zoom image 
            width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)
            height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)
            horizontal_flip=False,  # randomly flip images
            vertical_flip=False)  # randomly flip images
    
    
    datagen.fit(X_train)
    # Fit the model
    history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
                                  epochs = epochs, validation_data = (X_val,Y_val),
                                  verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
                                  , callbacks=[learning_rate_reduction])

    # Plot the loss and accuracy curves for training and validation 
    fig, ax = plt.subplots(2,1)
    ax[0].plot(history.history['loss'], color='b', label="Training loss")
    ax[0].plot(history.history['val_loss'], color='r', label="validation loss",axes =ax[0])
    legend = ax[0].legend(loc='best', shadow=True)
    
    ax[1].plot(history.history['acc'], color='b', label="Training accuracy")
    ax[1].plot(history.history['val_acc'], color='r',label="Validation accuracy")
    legend = ax[1].legend(loc='best', shadow=True)

    # Look at confusion matrix 
    
    def plot_confusion_matrix(cm, classes,
                              normalize=False,
                              title='Confusion matrix',
                              cmap=plt.cm.Blues):
        """
        This function prints and plots the confusion matrix.
        Normalization can be applied by setting `normalize=True`.
        """
        plt.imshow(cm, interpolation='nearest', cmap=cmap)
        plt.title(title)
        plt.colorbar()
        tick_marks = np.arange(len(classes))
        plt.xticks(tick_marks, classes, rotation=45)
        plt.yticks(tick_marks, classes)
    
        if normalize:
            cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    
        thresh = cm.max() / 2.
        for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
            plt.text(j, i, cm[i, j],
                     horizontalalignment="center",
                     color="white" if cm[i, j] > thresh else "black")
    
        plt.tight_layout()
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
    
    # Predict the values from the validation dataset
    Y_pred = model.predict(X_val)
    # Convert predictions classes to one hot vectors 
    Y_pred_classes = np.argmax(Y_pred,axis = 1) 
    # Convert validation observations to one hot vectors
    Y_true = np.argmax(Y_val,axis = 1) 
    # compute the confusion matrix
    confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) 
    # plot the confusion matrix
    plot_confusion_matrix(confusion_mtx, classes = range(10)) 

    # Display some error results 
    
    # Errors are difference between predicted labels and true labels
    errors = (Y_pred_classes - Y_true != 0)
    
    Y_pred_classes_errors = Y_pred_classes[errors]
    Y_pred_errors = Y_pred[errors]
    Y_true_errors = Y_true[errors]
    X_val_errors = X_val[errors]
    
    def display_errors(errors_index,img_errors,pred_errors, obs_errors):
        """ This function shows 6 images with their predicted and real labels"""
        n = 0
        nrows = 2
        ncols = 3
        fig, ax = plt.subplots(nrows,ncols,sharex=True,sharey=True)
        for row in range(nrows):
            for col in range(ncols):
                error = errors_index[n]
                ax[row,col].imshow((img_errors[error]).reshape((28,28)))
                ax[row,col].set_title("Predicted label :{}
    True label :{}".format(pred_errors[error],obs_errors[error]))
                n += 1
    
    # Probabilities of the wrong predicted numbers
    Y_pred_errors_prob = np.max(Y_pred_errors,axis = 1)
    
    # Predicted probabilities of the true values in the error set
    true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1))
    
    # Difference between the probability of the predicted label and the true label
    delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors
    
    # Sorted list of the delta prob errors
    sorted_dela_errors = np.argsort(delta_pred_true_errors)
    
    # Top 6 errors 
    most_important_errors = sorted_dela_errors[-6:]
    
    # Show the top 6 errors
    display_errors(most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors)

    # predict results
    results = model.predict(test)
    
    # select the indix with the maximum probability
    results = np.argmax(results,axis = 1)
    
    results = pd.Series(results,name="Label")
    submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
    
    submission.to_csv("cnn_mnist_datagen.csv",index=False)
  • 相关阅读:
    JVM基础系列第1讲:Java 语言的前世今生
    JVM基础系列开篇:为什么要学虚拟机?
    2018 精选文章集合
    如何唯一确定一个 Java 类?
    Java 中的 try catch 影响性能吗?
    不读大学也能成功,七个读大学的备用选择
    【中间件安全】IIS7.0 安全加固规范
    【中间件安全】Apache 安全加固规范
    Excel 保护工作表
    【应用安全】S-SDLC安全开发生命周期
  • 原文地址:https://www.cnblogs.com/tszr/p/11256239.html
Copyright © 2020-2023  润新知