• 吴裕雄--天生自然 R语言开发学习:分类(续二)


    #-----------------------------------------------------------------------------#
    # R in Action (2nd ed): Chapter 17                                            #
    # Classification                                                              #
    # requires packaged rpart, party, randomForest, kernlab, rattle               #
    # install.packages(c("rpart", "party", "randomForest", "e1071", "rpart.plot") #
    # install.packages(rattle, dependencies = c("Depends", "Suggests"))           #
    #-----------------------------------------------------------------------------#
    
    par(ask=TRUE)
    
    # Listing 17.1 - Prepare the breast cancer data
    loc <- "http://archive.ics.uci.edu/ml/machine-learning-databases/"
    ds  <- "breast-cancer-wisconsin/breast-cancer-wisconsin.data"
    url <- paste(loc, ds, sep="")
    
    breast <- read.table(url, sep=",", header=FALSE, na.strings="?")
    names(breast) <- c("ID", "clumpThickness", "sizeUniformity",
                       "shapeUniformity", "maginalAdhesion", 
                       "singleEpithelialCellSize", "bareNuclei", 
                       "blandChromatin", "normalNucleoli", "mitosis", "class")
    
    df <- breast[-1]
    df$class <- factor(df$class, levels=c(2,4), 
                       labels=c("benign", "malignant"))
    
    set.seed(1234)
    train <- sample(nrow(df), 0.7*nrow(df))
    df.train <- df[train,]
    df.validate <- df[-train,]
    table(df.train$class)
    table(df.validate$class)
    
    # Listing 17.2 - Logistic regression with glm()
    fit.logit <- glm(class~., data=df.train, family=binomial())
    summary(fit.logit)
    prob <- predict(fit.logit, df.validate, type="response")
    logit.pred <- factor(prob > .5, levels=c(FALSE, TRUE), 
                         labels=c("benign", "malignant"))
    logit.perf <- table(df.validate$class, logit.pred,
                        dnn=c("Actual", "Predicted"))
    logit.perf
    
    
    # Listing 17.3 - Creating a classical decision tree with rpart()
    library(rpart)
    set.seed(1234)
    dtree <- rpart(class ~ ., data=df.train, method="class",      
                   parms=list(split="information"))
    dtree$cptable
    plotcp(dtree)
    
    dtree.pruned <- prune(dtree, cp=.0125) 
    
    library(rpart.plot)
    prp(dtree.pruned, type = 2, extra = 104,  
        fallen.leaves = TRUE, main="Decision Tree")
    
    dtree.pred <- predict(dtree.pruned, df.validate, type="class")
    dtree.perf <- table(df.validate$class, dtree.pred, 
                        dnn=c("Actual", "Predicted"))
    dtree.perf
    
    
    # Listing 17.4 - Creating a conditional inference tree with ctree()
    library(party)
    fit.ctree <- ctree(class~., data=df.train)
    plot(fit.ctree, main="Conditional Inference Tree")
    
    ctree.pred <- predict(fit.ctree, df.validate, type="response")
    ctree.perf <- table(df.validate$class, ctree.pred, 
                        dnn=c("Actual", "Predicted"))
    ctree.perf
    
    
    # Listing 17.5 - Random forest
    library(randomForest)
    set.seed(1234)
    fit.forest <- randomForest(class~., data=df.train,        
                               na.action=na.roughfix,
                               importance=TRUE)             
    fit.forest
    importance(fit.forest, type=2)                          
    forest.pred <- predict(fit.forest, df.validate)         
    forest.perf <- table(df.validate$class, forest.pred, 
                         dnn=c("Actual", "Predicted"))
    forest.perf
    
    
    # Listing 17.6 - A support vector machine
    library(e1071)
    set.seed(1234)
    fit.svm <- svm(class~., data=df.train)
    fit.svm
    svm.pred <- predict(fit.svm, na.omit(df.validate))
    svm.perf <- table(na.omit(df.validate)$class, 
                      svm.pred, dnn=c("Actual", "Predicted"))
    svm.perf
    
    
    # Listing 17.7 Tuning an RBF support vector machine (this can take a while)
    set.seed(1234)
    tuned <- tune.svm(class~., data=df.train,
                      gamma=10^(-6:1),
                      cost=10^(-10:10))
    tuned
    fit.svm <- svm(class~., data=df.train, gamma=.01, cost=1)
    svm.pred <- predict(fit.svm, na.omit(df.validate))
    svm.perf <- table(na.omit(df.validate)$class,
                      svm.pred, dnn=c("Actual", "Predicted"))
    svm.perf
    
    
    # Listing 17.8 Function for assessing binary classification accuracy
    performance <- function(table, n=2){
      if(!all(dim(table) == c(2,2)))
        stop("Must be a 2 x 2 table")
      tn = table[1,1]
      fp = table[1,2]
      fn = table[2,1]
      tp = table[2,2]
      sensitivity = tp/(tp+fn)
      specificity = tn/(tn+fp)
      ppp = tp/(tp+fp)
      npp = tn/(tn+fn)
      hitrate = (tp+tn)/(tp+tn+fp+fn)
      result <- paste("Sensitivity = ", round(sensitivity, n) ,
                      "
    Specificity = ", round(specificity, n),
                      "
    Positive Predictive Value = ", round(ppp, n),
                      "
    Negative Predictive Value = ", round(npp, n),
                      "
    Accuracy = ", round(hitrate, n), "
    ", sep="")
      cat(result)
    }
    
    
    # Listing 17.9 - Performance of breast cancer data classifiers
    performance(dtree.perf)
    performance(ctree.perf)
    performance(forest.perf)
    performance(svm.perf)
    
    
    # Using Rattle Package for data mining
    
    loc <- "http://archive.ics.uci.edu/ml/machine-learning-databases/"
    ds <- "pima-indians-diabetes/pima-indians-diabetes.data"
    url <- paste(loc, ds, sep="")
    diabetes <- read.table(url, sep=",", header=FALSE)
    names(diabetes) <- c("npregant", "plasma", "bp", "triceps",
                         "insulin", "bmi", "pedigree", "age", "class")
    diabetes$class <- factor(diabetes$class, levels=c(0,1),
                             labels=c("normal", "diabetic"))
    library(rattle)
    rattle()
  • 相关阅读:
    Java中Iterator类的详细介绍
    Java中Iterator类的详细介绍
    Java中Iterator类的详细介绍
    Java中Iterator类的详细介绍
    VC++的Unicode编程
    实现系统滚动条换肤功能
    透明位图的显示
    用于树控件消息处理的几个结构
    C++实现半透明按钮控件(PNG,GDI+)
    Bootstrap+Knockout.JS+ASP.Net MVC3+PetaPOCO实现CRUD操作
  • 原文地址:https://www.cnblogs.com/tszr/p/11176718.html
Copyright © 2020-2023  润新知