• 吴裕雄--天生自然 R语言开发学习:基本统计分析(续二)


    #---------------------------------------------------------------------#
    # R in Action (2nd ed): Chapter 7                                     #
    # Basic statistics                                                    #
    # requires packages npmc, ggm, gmodels, vcd, Hmisc,                   #
    #                   pastecs, psych, doBy to be installed              #
    # install.packages(c("ggm", "gmodels", "vcd", "Hmisc",                #
    #                    "pastecs", "psych", "doBy"))                     #
    #---------------------------------------------------------------------#
    
    
    mt <- mtcars[c("mpg", "hp", "wt", "am")]
    head(mt)
    
    # Listing 7.1 - Descriptive stats via summary
    mt <- mtcars[c("mpg", "hp", "wt", "am")]
    summary(mt)
    
    
    # Listing 7.2 - descriptive stats via sapply
    mystats <- function(x, na.omit=FALSE){
      if (na.omit)
        x <- x[!is.na(x)]
      m <- mean(x)
      n <- length(x)
      s <- sd(x)
      skew <- sum((x-m)^3/s^3)/n
      kurt <- sum((x-m)^4/s^4)/n - 3
      return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))
    }
    
    myvars <- c("mpg", "hp", "wt")
    sapply(mtcars[myvars], mystats)
    
    
    # Listing 7.3 - Descriptive stats via describe (Hmisc)
    library(Hmisc)
    myvars <- c("mpg", "hp", "wt")
    describe(mtcars[myvars])
    
    
    # Listing 7.,4 - Descriptive stats via stat.desc (pastecs)
    library(pastecs)
    myvars <- c("mpg", "hp", "wt")
    stat.desc(mtcars[myvars])
    
    
    # Listing 7.5 - Descriptive stats via describe (psych)
    library(psych)
    myvars <- c("mpg", "hp", "wt")
    describe(mtcars[myvars])
    
    
    # Listing 7.6 - Descriptive stats by group with aggregate
    myvars <- c("mpg", "hp", "wt")
    aggregate(mtcars[myvars], by=list(am=mtcars$am), mean)
    aggregate(mtcars[myvars], by=list(am=mtcars$am), sd)
    
    
    # Listing 7.7 - Descriptive stats by group via by
    dstats <- function(x)sapply(x, mystats)
    myvars <- c("mpg", "hp", "wt")
    by(mtcars[myvars], mtcars$am, dstats)
    
    
    # Listing 7.8 - Descriptive stats by group via summaryBy
    library(doBy)
    summaryBy(mpg+hp+wt~am, data=mtcars, FUN=mystats)
    
    
    # Listing 7.9 - Descriptive stats by group via describe.by (psych)
    library(psych)
    myvars <- c("mpg", "hp", "wt")
    describeBy(mtcars[myvars], list(am=mtcars$am))
    
    
    # summary statistics by group via the reshape package
    library(reshape)
    dstats <- function(x)(c(n=length(x), mean=mean(x), sd=sd(x)))
    dfm <- melt(mtcars, measure.vars=c("mpg", "hp", "wt"), 
                id.vars=c("am", "cyl"))
    cast(dfm, am + cyl + variable ~ ., dstats)
    
    
    # frequency tables
    library(vcd)
    head(Arthritis)
    
    # one way table
    mytable <- with(Arthritis, table(Improved))
    mytable  # frequencies
    prop.table(mytable) # proportions
    prop.table(mytable)*100 # percentages
    
    
    # two way table
    mytable <- xtabs(~ Treatment+Improved, data=Arthritis)
    mytable # frequencies
    margin.table(mytable,1) #row sums
    margin.table(mytable, 2) # column sums
    prop.table(mytable) # cell proportions
    prop.table(mytable, 1) # row proportions
    prop.table(mytable, 2) # column proportions
    addmargins(mytable) # add row and column sums to table
    
    # more complex tables
    addmargins(prop.table(mytable))
    addmargins(prop.table(mytable, 1), 2)
    addmargins(prop.table(mytable, 2), 1)
    
    
    # Listing 7.10 - Two way table using CrossTable
    library(gmodels)
    CrossTable(Arthritis$Treatment, Arthritis$Improved)
    
    
    # Listing 7.11 - Three way table
    mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis)
    mytable
    ftable(mytable) 
    margin.table(mytable, 1)
    margin.table(mytable, 2)
    margin.table(mytable, 2)
    margin.table(mytable, c(1,3))
    ftable(prop.table(mytable, c(1,2)))
    ftable(addmargins(prop.table(mytable, c(1, 2)), 3))
    
    # Listing 7.12 - Chi-square test of independence
    library(vcd)
    mytable <- xtabs(~Treatment+Improved, data=Arthritis)
    chisq.test(mytable)
    mytable <- xtabs(~Improved+Sex, data=Arthritis)
    chisq.test(mytable)
    
    
    # Fisher's exact test
    mytable <- xtabs(~Treatment+Improved, data=Arthritis)
    fisher.test(mytable)
    
    
    # Chochran-Mantel-Haenszel test
    mytable <- xtabs(~Treatment+Improved+Sex, data=Arthritis)
    mantelhaen.test(mytable)
    
    
    # Listing 7.13 - Measures of association for a two-way table
    library(vcd)
    mytable <- xtabs(~Treatment+Improved, data=Arthritis)
    assocstats(mytable)
    
    
    # Listing 7.14 Covariances and correlations
    states<- state.x77[,1:6]
    cov(states)
    cor(states)
    cor(states, method="spearman")
    
    x <- states[,c("Population", "Income", "Illiteracy", "HS Grad")]
    y <- states[,c("Life Exp", "Murder")]
    cor(x,y)
    
    
    # partial correlations
    library(ggm)
    # partial correlation of population and murder rate, controlling
    # for income, illiteracy rate, and HS graduation rate
    pcor(c(1,5,2,3,6), cov(states))
    
    
    # Listing 7.15 - Testing a correlation coefficient for significance
    cor.test(states[,3], states[,5])
    
    
    # Listing 7.16 - Correlation matrix and tests of significance via corr.test
    library(psych)
    corr.test(states, use="complete")
    
    
    # t test
    library(MASS)
    t.test(Prob ~ So, data=UScrime)
    
    
    # dependent t test
    sapply(UScrime[c("U1","U2")], function(x)(c(mean=mean(x),sd=sd(x))))
    with(UScrime, t.test(U1, U2, paired=TRUE))
    
    
    # Wilcoxon two group comparison
    with(UScrime, by(Prob, So, median))
    wilcox.test(Prob ~ So, data=UScrime)
    
    sapply(UScrime[c("U1", "U2")], median)
    with(UScrime, wilcox.test(U1, U2, paired=TRUE))
    
    
    # Kruskal Wallis test
    states <- data.frame(state.region, state.x77)
    kruskal.test(Illiteracy ~ state.region, data=states)
    
    
    # Listing 7.17 - Nonparametric multiple comparisons
    source("http://www.statmethods.net/RiA/wmc.txt")              
    states <- data.frame(state.region, state.x77)
    wmc(Illiteracy ~ state.region, data=states, method="holm")
  • 相关阅读:
    docker进入mysql命令窗口
    dyoYQoyfRb
    2018icpc 徐州h题
    求逆元
    取模的n种情况
    Eratos筛法(筛选素数)
    扩展欧几里得
    函数库里有三角函数 和反三角函数
    HDU2795线段树入门 简单查询和修改
    快速排序 分析
  • 原文地址:https://www.cnblogs.com/tszr/p/11175435.html
Copyright © 2020-2023  润新知