• 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型


    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    INPUT_NODE = 784     # 输入节点
    OUTPUT_NODE = 10     # 输出节点
    LAYER1_NODE = 500    # 隐藏层数       
                                  
    BATCH_SIZE = 100     # 每次batch打包的样本个数        
    
    # 模型相关的参数
    LEARNING_RATE_BASE = 0.8      
    LEARNING_RATE_DECAY = 0.99    
    REGULARAZTION_RATE = 0.0001   
    TRAINING_STEPS = 5000        
    MOVING_AVERAGE_DECAY = 0.99  
    
    def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
        # 不使用滑动平均类
        if avg_class == None:
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
            return tf.matmul(layer1, weights2) + biases2
    
        else:
            # 使用滑动平均类
            layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
            return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)  
        
    def train(mnist):
        x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
        # 生成隐藏层的参数。
        weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
        biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
        # 生成输出层的参数。
        weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
        biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
    
        # 计算不含滑动平均类的前向传播结果
        y = inference(x, None, weights1, biases1, weights2, biases2)
        
        # 定义训练轮数及相关的滑动平均类 
        global_step = tf.Variable(0, trainable=False)
        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables())
        average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2)
        
        # 计算交叉熵及其平均值
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        
        # 损失函数的计算
        regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
        regularaztion = regularizer(weights1) + regularizer(weights2)
        loss = cross_entropy_mean + regularaztion
        
        # 设置指数衰减的学习率。
        learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY,staircase=True)
        
        # 优化损失函数
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
        
        # 反向传播更新参数和更新每一个参数的滑动平均值
        with tf.control_dependencies([train_step, variables_averages_op]):
            train_op = tf.no_op(name='train')
    
        # 计算正确率
        correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        
        # 初始化会话,并开始训练过程。
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
            test_feed = {x: mnist.test.images, y_: mnist.test.labels} 
            
            # 循环的训练神经网络。
            for i in range(TRAINING_STEPS):
                if i % 1000 == 0:
                    validate_acc = sess.run(accuracy, feed_dict=validate_feed)
                    print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
                xs,ys=mnist.train.next_batch(BATCH_SIZE)
                sess.run(train_op,feed_dict={x:xs,y_:ys})
            test_acc=sess.run(accuracy,feed_dict=test_feed)
            print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc)))
            
    def main(argv=None):
        mnist = input_data.read_data_sets("E:\MNIST_data\", one_hot=True)
        train(mnist)
    
    if __name__=='__main__':
        main()

  • 相关阅读:
    获取父窗口的xxx节点的方法
    enumeration
    关于Java正则表达式的一些理解
    简单JNI的使用在Java中调用C库函数
    cursor管理
    [转]Vim配置与高级技巧
    [转]Vim+Taglist+Ctags
    在Windows下面使用cygwin将含有JNI的C文件编译成DLL文件
    vim转换大小写
    JMeter学习资料集锦
  • 原文地址:https://www.cnblogs.com/tszr/p/10875327.html
Copyright © 2020-2023  润新知