• 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示



    #
    K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import pandas as pd import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr') cursor = conn.cursor() #获取数据集 def getdata(surgery,surgeryChest): sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhenZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest) cursor.execute(sql) rows = cursor.fetchall() dataset = [] lables = [] for row in rows: temp = [] temp.append(row[0]) temp.append(row[1]) temp.append(row[2]) temp.append(row[3]) temp.append(row[4]) dataset.append(temp) lables.append(row[5]) return np.array(dataset),np.array(lables) def gettestdata(surgery,surgeryChest): sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from testZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest) cursor.execute(sql) rows = cursor.fetchall() testdataset = [] testlables = [] for row in rows: temp = [] temp.append(row[0]) temp.append(row[1]) temp.append(row[2]) temp.append(row[3]) temp.append(row[4]) testdataset.append(temp) testlables.append(row[5]) return np.array(testdataset),np.array(testlables) #K-NN分类 def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = np.tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] #归一化 def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = np.zeros(np.shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - np.tile(minVals, (m,1)) normDataSet = normDataSet/np.tile(ranges, (m,1)) return normDataSet, ranges, minVals erace = [] accuc = [] t = [] #启动和检测模型 def datingClassTest(): datingDataMat,datingLabels = getdata("外科","胸外科") normMat, ranges, minVals = autoNorm(datingDataMat) testdataset,testlables = gettestdata("外科","胸外科") testnormMat, testranges, testminVals = autoNorm(testdataset) errorCount = 0.0 start = time.time() for j in [3,5,7,9,11,13]: for i in range(np.shape(testnormMat)[0]): classifierResult = classify0(testnormMat[i,:],normMat,datingLabels,j) print("the classifier came back with: %s, the real answer is: %s" % (classifierResult, testlables[i])) if (classifierResult != testlables[i]): errorCount += 1.0 end = time.time() t.append(end) erace.append(errorCount/float(np.shape(testnormMat)[0])*100) accuc.append((1.0-errorCount/float(np.shape(testnormMat)[0]))*100) print("错误率: %.2f%%" % (errorCount/float(np.shape(testnormMat)[0])*100)) print("准确率: %.2f%%" % ((1.0-errorCount/float(np.shape(testnormMat)[0]))*100)) print("训练和预测一共耗时: %.2f 秒" % (end-start)) datingClassTest() print(accuc) print(erace) print(t)

    #探索不同的K值对算法的影响
    
    import matplotlib.pyplot as plt
    
    x = [3,5,7,9,11,13]
    plt.plot(x,erace,c='r')
    plt.plot(x,accuc,c='g')
    plt.legend(['error race','accuce race'],loc=9)
    plt.show()
    print(accuc)
    print(erace)

    #决策树
    import os
    import sys
    import time
    import operator
    import cx_Oracle
    import numpy as np
    import pandas as pd
    from math import log
    import tensorflow as tf
    
    conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
    cursor = conn.cursor()
    
    #获取数据集
    def getdata(surgery,surgeryChest):
        sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhenZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
        cursor.execute(sql)
        rows = cursor.fetchall()
        dataset = []
        for row in rows:
            temp = []
            temp.append(row[0])
            temp.append(row[1])
            temp.append(row[2])
            temp.append(row[3])
            temp.append(row[4])
            temp.append(row[5])
            dataset.append(temp)
        lables = []
        lables.append("呼吸急促")
        lables.append("持续性脉搏加快")
        lables.append("畏寒")
        lables.append("血压降低")
        lables.append("咳血")
        return dataset,lables
    
    def gettestdata(surgery,surgeryChest):
        sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from testZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
        cursor.execute(sql)
        rows = cursor.fetchall()
        testdataset = []
        testlables = []
        for row in rows:
            temp = []
            temp.append(row[0])
            temp.append(row[1])
            temp.append(row[2])
            temp.append(row[3])
            temp.append(row[4])
            testdataset.append(temp)
            testlables.append(row[5])
        return testdataset,testlables
    
    #计算熵值
    def calcShannonEnt(dataSet):
        numEntries = len(dataSet)
        labelCounts = {}
        for featVec in dataSet: 
            currentLabel = featVec[-1]
            if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob,2) 
        return shannonEnt
        
    #按照给定特征划分数据集
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]    
                reducedFeatVec.extend(featVec[axis+1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet
    
    #选择最好的属性
    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1     
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0
        bestFeature = -1
        for i in range(numFeatures):       
            featList = [example[i] for example in dataSet]
            uniqueVals = set(featList)       
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet)/float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)     
            infoGain = baseEntropy - newEntropy    
            if (infoGain > bestInfoGain):      
                bestInfoGain = infoGain        
                bestFeature = i
        return bestFeature                     
    
    #统计机制
    def majorityCnt(classList):
        classCount={}
        for vote in classList:
            if vote not in classCount.keys(): classCount[vote] = 0
            classCount[vote] += 1
        sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    
    #创建决策树
    def createTree(dataSet,labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) == len(classList): 
            return classList[0]
        if len(dataSet[0]) == 1: 
            return majorityCnt(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        myTree = {bestFeatLabel:{}}
        temp = []
        for i in labels:
            if i != labels[bestFeat]:
                temp.append(i)
        labels = temp
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]      
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        return myTree   
    
    #使用决策树模型分类
    def classify(inputTree,featLabels,testVec):
        for i in inputTree.keys():
            firstStr = i
            break
        secondDict = inputTree[firstStr]
        featIndex = featLabels.index(firstStr)
        key = testVec[featIndex]
        valueOfFeat = secondDict[key]
        if isinstance(valueOfFeat, dict): 
            classLabel = classify(valueOfFeat, featLabels, testVec)
        else: classLabel = valueOfFeat
        return classLabel
    
    #启动和检测模型
    def datingClassTest():
        dataSet,labels = getdata("外科","胸外科")
        myTree = createTree(dataSet,labels)
        testdataset,testlables = gettestdata("外科","胸外科")
        errorCount = 0.0
        start = time.time()
        for i in range(np.shape(testdataset)[0]):
            classifierResult = classify(myTree,labels,testdataset[i])
            print("the classifier came back with: %s, the real answer is: %s" % (classifierResult, testlables[i]))
            if (classifierResult != testlables[i]): 
                errorCount += 1.0
        end = time.time()
        print("错误率: %.2f%%" % (errorCount/float(np.shape(testdataset)[0])*100))
        print("准确率: %.2f%%" % ((1.0-errorCount/float(np.shape(testdataset)[0]))*100))
        print("训练和预测一共耗时: %.2f 秒" % (end-start))
    datingClassTest()

    #选取前600条记录生成并打印决策树
    dataSet,labels = getdata("外科","胸外科")
    dataSet = dataSet[0:600]
    labels = labels[0:600]
    myTree = createTree(dataSet,labels)
    print(myTree)

    #比较K-NN算法与决策树算法的优劣
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    x = np.array([10,12])
    y = [85.6,87.3]
    plt.bar(x,y,edgecolor='yellow')
    for i,j in zip(x,y):
        plt.text(i-0.2,j-0.2,'%.2f%%' % j)
    plt.text(9.7,40,'K-NN right race')
    plt.text(11.7,40,'Tree right race')
    plt.show()

    #使用神经网络探索数据集
    import sys
    import os
    import time
    import operator
    import cx_Oracle
    import numpy as np
    import pandas as pd
    import tensorflow as tf
    
    conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
    cursor = conn.cursor()
    
    #one-hot编码
    def onehot(labels):
        n_sample = len(labels)
        n_class = max(labels) + 1
        onehot_labels = np.zeros((n_sample, n_class))
        onehot_labels[np.arange(n_sample), labels] = 1
        return onehot_labels
    
    #获取数据集
    def getdata(surgery,surgeryChest):
        sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
        cursor.execute(sql)
        rows = cursor.fetchall()
        dataset = []
        lables = []
        for row in rows:
            temp = []
            temp.append(row[0])
            temp.append(row[1])
            temp.append(row[2])
            temp.append(row[3])
            temp.append(row[4])
            dataset.append(temp)
            if(row[5]==3):
                lables.append(0)
            elif(row[5]==6):
                lables.append(1)
            else:
                lables.append(2)
        dataset = np.array(dataset)
        lables = np.array(lables)
        dataset = dataset.astype(np.float32)
        labless = onehot(lables)
        return dataset,labless
    
    #获取测试数据集
    def gettestdata(surgery,surgeryChest):
        sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
        cursor.execute(sql)
        rows = cursor.fetchall()
        testdataset = []
        testlables = []
        for row in rows:
            temp = []
            temp.append(row[0])
            temp.append(row[1])
            temp.append(row[2])
            temp.append(row[3])
            temp.append(row[4])
            testdataset.append(temp)
            if(row[5]==3):
                testlables.append(0)
            elif(row[5]==6):
                testlables.append(1)
            else:
                testlables.append(2)
        testdataset = np.array(testdataset)
        testlables = np.array(testlables)
        testdataset = testdataset.astype(np.float32)
        testlabless = onehot(testlables)
        return testdataset,testlabless
    
    dataset,labless = getdata("外科","胸外科")
    testdataset,testlables = gettestdata("外科","胸外科")
    
    dataset = dataset[0:100]
    labless = labless[0:100]
    
    x_data = tf.placeholder("float32", [None, 5])
    y_data = tf.placeholder("float32", [None, 3])
    
    
    weight = tf.Variable(tf.ones([5, 3]))
    bias = tf.Variable(tf.ones([3]))
    
    #使用softmax激活函数
    y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias)
    
    #y_model = tf.nn.relu(tf.matmul(x_data, weight) + bias)
    
    # loss = tf.reduce_sum(tf.pow((y_model - y_data), 2))
    
    #使用交叉熵作为损失函数
    loss = -tf.reduce_sum(y_data*tf.log(y_model))
    
    # train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss)
    
    #使用AdamOptimizer优化器
    train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
    
    
    #train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss)
    
    #评估模型
    correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    init = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init)
    start = time.time()
    for _ in range(10):
        for i in range(int(len(dataset)/100)):
            sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]})
    print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables}))
    end = time.time()
    print("模型训练和测试公耗时:%.2f 秒" % (end-start))

    #加深一层神经网络
    import sys
    import os
    import time
    import operator
    import cx_Oracle
    import numpy as np
    import pandas as pd
    import tensorflow as tf
    
    conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
    cursor = conn.cursor()
    
    #one-hot编码
    def onehot(labels):
        n_sample = len(labels)
        n_class = max(labels) + 1
        onehot_labels = np.zeros((n_sample, n_class))
        onehot_labels[np.arange(n_sample), labels] = 1
        return onehot_labels
    
    #获取数据集
    def getdata(surgery,surgeryChest):
        sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
        cursor.execute(sql)
        rows = cursor.fetchall()
        dataset = []
        lables = []
        for row in rows:
            temp = []
            temp.append(row[0])
            temp.append(row[1])
            temp.append(row[2])
            temp.append(row[3])
            temp.append(row[4])
            dataset.append(temp)
            if(row[5]==3):
                lables.append(0)
            elif(row[5]==6):
                lables.append(1)
            else:
                lables.append(2)
        dataset = np.array(dataset)
        lables = np.array(lables)
        dataset = dataset.astype(np.float32)
        labless = onehot(lables)
        return dataset,labless
    
    def gettestdata(surgery,surgeryChest):
        sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
        cursor.execute(sql)
        rows = cursor.fetchall()
        testdataset = []
        testlables = []
        for row in rows:
            temp = []
            temp.append(row[0])
            temp.append(row[1])
            temp.append(row[2])
            temp.append(row[3])
            temp.append(row[4])
            testdataset.append(temp)
            if(row[5]==3):
                testlables.append(0)
            elif(row[5]==6):
                testlables.append(1)
            else:
                testlables.append(2)
        testdataset = np.array(testdataset)
        testlables = np.array(testlables)
        testdataset = testdataset.astype(np.float32)
        testlabless = onehot(testlables)
        return testdataset,testlabless
    
    dataset,labless = getdata("外科","胸外科")
    testdataset,testlables = gettestdata("外科","胸外科")
    
    dataset = dataset[0:100]
    labless = labless[0:100]
    
    x_data = tf.placeholder("float32", [None, 5])
    y_data = tf.placeholder("float32", [None, 3])
    
    weight1 = tf.Variable(tf.ones([5, 20]))
    bias1 = tf.Variable(tf.ones([20]))
    y_model1 = tf.matmul(x_data, weight1) + bias1
    
    #加深一层神经网络
    weight2 = tf.Variable(tf.ones([20, 3]))
    bias2 = tf.Variable(tf.ones([3]))
    y_model = tf.nn.softmax(tf.matmul(y_model1, weight2) + bias2)
    
    loss = tf.reduce_sum(tf.pow((y_model - y_data), 2))
    # loss = -tf.reduce_sum(y_data*tf.log(y_model))
    
    #train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss)
    train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
    # train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss)
    
    correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    init = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init)
    start = time.time()
    for _ in range(10):
        for i in range(int(len(dataset)/100)):
            sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]})
    print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables}))
    end = time.time()
    print("模型训练和测试公耗时:%.2f 秒" % (end-start))

    #比较决策树与神经网络的优劣
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    x = np.array([10,12])
    y = [87.1,87.4]
    plt.bar(x,y,edgecolor="yellow")
    for i,j in zip(x,y):
        plt.text(i-0.2,j-0.2,"%.2f%%" % j)
    plt.text(9.7,40,"Tree right race")
    plt.text(11.7,40,"Net right race")
    plt.scatter([9.7,11.7],[0.05,0.36],c="r")
    plt.plot([9.7,11.7],[0.05,0.36],c="g")
    plt.show()

    #统计各种算法处理模型数据
    K-NN算法:
    当K取[3,5,7,9,11,13]时,对应的:
    准确率:[85.6, 72.6, 60.0, 47.4, 34.8, 22.299999999999996]
    总耗时:[1554119134.435363, 1554119136.6192698, 
         1554119138.846019, 1554119141.2507513, 1554119143.4782736, 1554119145.5415804]
    
    决策树:
    准确率: 87.10%
    训练和预测一共耗时: 0.05 秒
        
    神经网络设计:
    1 最小二乘法 softmax GradientDescentOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.162 最小二乘法 softmax AdamOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.193 最小二乘法 softmax MomentumOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.184 最小二乘法 relu GradientDescentOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.175 最小二乘法 relu AdamOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.156 最小二乘法 relu MomentumOptimizer 模型
    模型准确率 0.006
    模型训练和测试公耗时:0.197 交叉熵 softmax GradientDescentOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.098 交叉熵 softmax AdamOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.089 交叉熵 softmax MomentumOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.0610 交叉熵 relu GradientDescentOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.0811 交叉熵 relu AdamOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.0812 交叉熵 relu MomentumOptimizer 模型
    模型准确率 0.874
    模型训练和测试公耗时:0.09 秒
    
    从上面的12种神经网络设计模型中可以看出:最小二乘法 relu MomentumOptimizer 模型
    的准确率只有0.006,所以这种模型的设计是失败的。
    
    a = [0.874]*10
    print(a)
    #计算成功的各种神经网络模型的准确率与耗时的比值:
    a = [0.874]*11
    b = [0.16,0.19,0.18,0.17,0.15,0.09,0.08,0.06,0.08,0.09,0.09]
    c = []
    for i in range(len(a)):
        c.append(a[i]/b[i])
    for i in range(len(c)):
        print("准确率与耗时的比值:%.4f" % (c[i]))

    #K-NN算法
    #当K取3、5、7、9、11、13时的准确率饼图分布显示
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    acc = [85.6, 72.6, 60.0, 47.4, 34.8, 22.2]
    labels = ['K-3','K-5','K-7','K-9','K-11','K-13']
    plt.pie(acc,labels=labels,shadow=True,startangle=90,autopct='%1.4f%%')
    plt.axis('equal')
    plt.title('K-NN',fontsize=25)
    plt.show()

    #K-NN算法耗时散点图
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    
    x = np.array([1,2,3,4,5,6])
    z = np.array([1554119134.435363, 1554119136.6192698,1554119138.846019,
                  1554119141.2507513, 1554119143.4782736, 1554119145.5415804])
    plt.scatter(x,z,c='g')
    plt.xticks(x+0.4,['KNN-1','KNN-2','KNN-3','KNN-4','KNN-5','KNN-6'])
    plt.show()

    #神经网络算法对应各种有用的模型设计耗时曲线图
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    
    x = np.array([1,2,3,4,5,6,7,8,9,10,11])
    z = np.array([0.16,0.19,0.18,0.17,0.15,0.09,0.08,0.06,0.08,0.09,0.09])
    plt.scatter(x,z,c='r')
    plt.xticks(x+0.4,['NET-1','NET-2','NET-3','NET-4','NET-5',
                     'NET-6','NET-7','NET-8','NET-9','NET-10','NET-11'])
    plt.show()

    #K-NN、决策树以及神经网络算法对比
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    acc = [85.6, 72.6, 60.0, 47.4, 34.8, 22.2,87.10,0.874,
           87.4,87.4,87.4,87.4,87.4,87.4,87.4,87.4,87.4,87.4]
    labels = ['K-3','K-5','K-7','K-9','K-11','K-13','TREE',
              'NET-1','NET-2','NET-3','NET-4','NET-5','NET-6','NET-7',
             'NET-8','NET-9','NET-10','NET-11']
    explode = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2,0,0,0]
    plt.pie(acc,labels=labels,explode=explode,shadow=True,startangle=90,autopct='%1.4f%%')
    plt.axis('equal')
    plt.title('K-NN AND TREE AND NET',fontsize=25)
    plt.show()

  • 相关阅读:
    spring ref &history&design philosophy
    LDAP & Implementation
    REST
    隔离级别
    Servlet Analysis
    Session&Cookie
    Dvelopment descriptor
    write RE validation
    hello2 source anaylis
    Filter
  • 原文地址:https://www.cnblogs.com/tszr/p/10859700.html
Copyright © 2020-2023  润新知