import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve #模型选择学习曲线learning_curve模型 def test_learning_curve(): ### 加载数据 digits = load_digits() X,y=digits.data,digits.target #### 获取学习曲线 ###### train_sizes=np.linspace(0.1,1.0,endpoint=True,dtype='float') abs_trains_sizes,train_scores, test_scores = learning_curve(LinearSVC(),X, y,cv=10, scoring="accuracy",train_sizes=train_sizes) ###### 对每个 C ,获取 10 折交叉上的预测得分上的均值和方差 ##### train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) ####### 绘图 ###### fig=plt.figure() ax=fig.add_subplot(1,1,1) ax.plot(abs_trains_sizes, train_scores_mean, label="Training Accuracy", color="r") ax.fill_between(abs_trains_sizes, train_scores_mean - train_scores_std,train_scores_mean + train_scores_std, alpha=0.2, color="r") ax.plot(abs_trains_sizes, test_scores_mean, label="Testing Accuracy", color="g") ax.fill_between(abs_trains_sizes, test_scores_mean - test_scores_std,test_scores_mean + test_scores_std, alpha=0.2, color="g") ax.set_title("Learning Curve with LinearSVC") ax.set_xlabel("Sample Nums") ax.set_ylabel("Score") ax.set_ylim(0,1.1) ax.legend(loc='best') plt.show() #调用test_learning_curve() test_learning_curve()