• 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingClassifier分类模型


    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn import datasets,ensemble
    from sklearn.model_selection import train_test_split
    
    def load_data_classification():
        '''
        加载用于分类问题的数据集
        '''
        # 使用 scikit-learn 自带的 digits 数据集
        digits=datasets.load_digits() 
        # 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
        return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) 
    
    #集成学习梯度提升决策树GradientBoostingClassifier分类模型
    def test_GradientBoostingClassifier(*data):
        X_train,X_test,y_train,y_test=data
        clf=ensemble.GradientBoostingClassifier()
        clf.fit(X_train,y_train)
        print("Traing Score:%f"%clf.score(X_train,y_train))
        print("Testing Score:%f"%clf.score(X_test,y_test))
    
    # 获取分类数据
    X_train,X_test,y_train,y_test=load_data_classification() 
    # 调用 test_GradientBoostingClassifier
    test_GradientBoostingClassifier(X_train,X_test,y_train,y_test) 

    def test_GradientBoostingClassifier_num(*data):
        '''
        测试 GradientBoostingClassifier 的预测性能随 n_estimators 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        nums=np.arange(1,100,step=2)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        testing_scores=[]
        training_scores=[]
        for num in nums:
            clf=ensemble.GradientBoostingClassifier(n_estimators=num)
            clf.fit(X_train,y_train)
            training_scores.append(clf.score(X_train,y_train))
            testing_scores.append(clf.score(X_test,y_test))
        ax.plot(nums,training_scores,label="Training Score")
        ax.plot(nums,testing_scores,label="Testing Score")
        ax.set_xlabel("estimator num")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1.05)
        plt.suptitle("GradientBoostingClassifier")
        plt.show()
        
    # 调用 test_GradientBoostingClassifier_num
    test_GradientBoostingClassifier_num(X_train,X_test,y_train,y_test)

    def test_GradientBoostingClassifier_maxdepth(*data):
        '''
        测试 GradientBoostingClassifier 的预测性能随 max_depth 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        maxdepths=np.arange(1,20)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        testing_scores=[]
        training_scores=[]
        for maxdepth in maxdepths:
            clf=ensemble.GradientBoostingClassifier(max_depth=maxdepth,max_leaf_nodes=None)
            clf.fit(X_train,y_train)
            training_scores.append(clf.score(X_train,y_train))
            testing_scores.append(clf.score(X_test,y_test))
        ax.plot(maxdepths,training_scores,label="Training Score")
        ax.plot(maxdepths,testing_scores,label="Testing Score")
        ax.set_xlabel("max_depth")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1.05)
        plt.suptitle("GradientBoostingClassifier")
        plt.show()
        
    # 调用 test_GradientBoostingClassifier_maxdepth
    test_GradientBoostingClassifier_maxdepth(X_train,X_test,y_train,y_test)

    def test_GradientBoostingClassifier_learning(*data):
        '''
        测试 GradientBoostingClassifier 的预测性能随学习率参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        learnings=np.linspace(0.01,1.0)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        testing_scores=[]
        training_scores=[]
        for learning in learnings:
            clf=ensemble.GradientBoostingClassifier(learning_rate=learning)
            clf.fit(X_train,y_train)
            training_scores.append(clf.score(X_train,y_train))
            testing_scores.append(clf.score(X_test,y_test))
        ax.plot(learnings,training_scores,label="Training Score")
        ax.plot(learnings,testing_scores,label="Testing Score")
        ax.set_xlabel("learning_rate")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1.05)
        plt.suptitle("GradientBoostingClassifier")
        plt.show()
        
    # 调用 test_GradientBoostingClassifier_learning
    test_GradientBoostingClassifier_learning(X_train,X_test,y_train,y_test)

    def test_GradientBoostingClassifier_subsample(*data):
        '''
        测试 GradientBoostingClassifier 的预测性能随 subsample 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        subsamples=np.linspace(0.01,1.0)
        testing_scores=[]
        training_scores=[]
        for subsample in subsamples:
            clf=ensemble.GradientBoostingClassifier(subsample=subsample)
            clf.fit(X_train,y_train)
            training_scores.append(clf.score(X_train,y_train))
            testing_scores.append(clf.score(X_test,y_test))
        ax.plot(subsamples,training_scores,label="Training Score")
        ax.plot(subsamples,testing_scores,label="Training Score")
        ax.set_xlabel("subsample")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1.05)
        plt.suptitle("GradientBoostingClassifier")
        plt.show()
        
    # 调用 test_GradientBoostingClassifier_subsample
    test_GradientBoostingClassifier_subsample(X_train,X_test,y_train,y_test)

    def test_GradientBoostingClassifier_max_features(*data):
        '''
        测试 GradientBoostingClassifier 的预测性能随 max_features 参数的影响
        '''
        X_train,X_test,y_train,y_test=data
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        max_features=np.linspace(0.01,1.0)
        testing_scores=[]
        training_scores=[]
        for features in max_features:
                clf=ensemble.GradientBoostingClassifier(max_features=features)
                clf.fit(X_train,y_train)
                training_scores.append(clf.score(X_train,y_train))
                testing_scores.append(clf.score(X_test,y_test))
        ax.plot(max_features,training_scores,label="Training Score")
        ax.plot(max_features,testing_scores,label="Training Score")
        ax.set_xlabel("max_features")
        ax.set_ylabel("score")
        ax.legend(loc="lower right")
        ax.set_ylim(0,1.05)
        plt.suptitle("GradientBoostingClassifier")
        plt.show()
        
    # 调用 test_GradientBoostingClassifier_max_features
    test_GradientBoostingClassifier_max_features(X_train,X_test,y_train,y_test)

  • 相关阅读:
    python列表、字典、循环结构练习题
    python的数据类型
    git配置子模块
    zabbix通过jmx采用默认tomcat模板监控tomcat好多值不支持的问题排查
    阿里云ecs自定义监控项
    开源跳板机jumpserver的安装部署和使用详细教程及踩坑经验
    kubernetes介绍
    git使用方法
    20199323 2019-2020-2 《网络攻防实践》第4周作业
    20199323 2019-2020-2 《网络攻防实践》第3周作业
  • 原文地址:https://www.cnblogs.com/tszr/p/10801558.html
Copyright © 2020-2023  润新知