• 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型


    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn import datasets,ensemble
    from sklearn.model_selection import train_test_split
    
    def load_data_classification():
        '''
        加载用于分类问题的数据集
        '''
        # 使用 scikit-learn 自带的 digits 数据集
        digits=datasets.load_digits() 
        # 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
        return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) 
    
    #集成学习AdaBoost算法回归模型
    def test_AdaBoostRegressor(*data):
        '''
        测试 AdaBoostRegressor 的用法,绘制 AdaBoostRegressor 的预测性能随基础回归器数量的影响
        '''
        X_train,X_test,y_train,y_test=data
        regr=ensemble.AdaBoostRegressor()
        regr.fit(X_train,y_train)
        ## 绘图
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        estimators_num=len(regr.estimators_)
        X=range(1,estimators_num+1)
        ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score")
        ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score")
        ax.set_xlabel("estimator num")
        ax.set_ylabel("score")
        ax.legend(loc="best")
        ax.set_title("AdaBoostRegressor")
        plt.show()
        
    # 获取分类数据
    X_train,X_test,y_train,y_test=load_data_classification() 
    # 调用 test_AdaBoostRegressor
    test_AdaBoostRegressor(X_train,X_test,y_train,y_test) 

    def test_AdaBoostRegressor_base_regr(*data):
        '''
        测试 AdaBoostRegressor 的预测性能随基础回归器数量的和基础回归器类型的影响
        '''
        from sklearn.svm import  LinearSVR
        
        X_train,X_test,y_train,y_test=data
        fig=plt.figure()
        regrs=[ensemble.AdaBoostRegressor(), # 基础回归器为默认类型
        ensemble.AdaBoostRegressor(base_estimator=LinearSVR(epsilon=0.01,C=100))] # 基础回归器为 LinearSVR
        labels=["Decision Tree Regressor","Linear SVM Regressor"]
        for i ,regr in enumerate(regrs):
            ax=fig.add_subplot(2,1,i+1)
            regr.fit(X_train,y_train)
            ## 绘图
            estimators_num=len(regr.estimators_)
            X=range(1,estimators_num+1)
            ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score")
            ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score")
            ax.set_xlabel("estimator num")
            ax.set_ylabel("score")
            ax.legend(loc="lower right")
            ax.set_ylim(-1,1)
            ax.set_title("Base_Estimator:%s"%labels[i])
        plt.suptitle("AdaBoostRegressor")
        plt.show()
        
    # 调用 test_AdaBoostRegressor_base_regr
    test_AdaBoostRegressor_base_regr(X_train,X_test,y_train,y_test) 

    def test_AdaBoostRegressor_learning_rate(*data):
        '''
        测试 AdaBoostRegressor 的预测性能随学习率的影响
        '''
        X_train,X_test,y_train,y_test=data
        learning_rates=np.linspace(0.01,1)
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        traing_scores=[]
        testing_scores=[]
        for learning_rate in learning_rates:
            regr=ensemble.AdaBoostRegressor(learning_rate=learning_rate,n_estimators=500)
            regr.fit(X_train,y_train)
            traing_scores.append(regr.score(X_train,y_train))
            testing_scores.append(regr.score(X_test,y_test))
        ax.plot(learning_rates,traing_scores,label="Traing score")
        ax.plot(learning_rates,testing_scores,label="Testing score")
        ax.set_xlabel("learning rate")
        ax.set_ylabel("score")
        ax.legend(loc="best")
        ax.set_title("AdaBoostRegressor")
        plt.show()
        
    # 调用 test_AdaBoostRegressor_learning_rate
    test_AdaBoostRegressor_learning_rate(X_train,X_test,y_train,y_test) 

    def test_AdaBoostRegressor_loss(*data):
        '''
        测试 AdaBoostRegressor 的预测性能随损失函数类型的影响
        '''
        X_train,X_test,y_train,y_test=data
        losses=['linear','square','exponential']
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        for i ,loss in enumerate(losses):
            regr=ensemble.AdaBoostRegressor(loss=loss,n_estimators=30)
            regr.fit(X_train,y_train)
            ## 绘图
            estimators_num=len(regr.estimators_)
            X=range(1,estimators_num+1)
            ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score:loss=%s"%loss)
            ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score:loss=%s"%loss)
            ax.set_xlabel("estimator num")
            ax.set_ylabel("score")
            ax.legend(loc="lower right")
            ax.set_ylim(-1,1)
        plt.suptitle("AdaBoostRegressor")
        plt.show()
        
    # 调用 test_AdaBoostRegressor_loss
    test_AdaBoostRegressor_loss(X_train,X_test,y_train,y_test) 

  • 相关阅读:
    设计模式-单列模式
    linux udp c/s
    linux 命令
    java String
    [转]Android进程间通信--消息机制及IPC机制实现
    Android入门:Activity四种启动模式
    CRT 重启Was
    jquery.cookie.js 使用
    div设置contentEditable="true"作为文本编辑器,定位光标解决办法
    居中展示图片
  • 原文地址:https://www.cnblogs.com/tszr/p/10801544.html
Copyright © 2020-2023  润新知