• 吴裕雄 python 机器学习——半监督学习LabelSpreading模型


    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn import  metrics
    from sklearn import datasets
    from sklearn.semi_supervised.label_propagation import LabelSpreading
    
    def load_data():
        '''
        加载数据集
        '''
        digits = datasets.load_digits()
        ######   混洗样本 ########
        rng = np.random.RandomState(0)
        indices = np.arange(len(digits.data)) # 样本下标集合
        rng.shuffle(indices) # 混洗样本下标集合
        X = digits.data[indices]
        y = digits.target[indices]
        ###### 生成未标记样本的下标集合 ####
        # 只有 10% 的样本有标记
        n_labeled_points = int(len(y)/10) 
        # 后面 90% 的样本未标记
        unlabeled_indices = np.arange(len(y))[n_labeled_points:] 
        return X,y,unlabeled_indices
    
    #半监督学习LabelSpreading模型
    def test_LabelSpreading(*data):
        X,y,unlabeled_indices=data
        y_train=np.copy(y) # 必须拷贝,后面要用到 y
        y_train[unlabeled_indices]=-1 # 未标记样本的标记设定为 -1
        clf=LabelSpreading(max_iter=100,kernel='rbf',gamma=0.1)
        clf.fit(X,y_train)
        ### 获取预测准确率
        predicted_labels = clf.transduction_[unlabeled_indices] # 预测标记
        true_labels = y[unlabeled_indices] # 真实标记
        print("Accuracy:%f"%metrics.accuracy_score(true_labels,predicted_labels))
        # 或者 print("Accuracy:%f"%clf.score(X[unlabeled_indices],true_labels))
        
    # 获取半监督分类数据集
    data=load_data() 
    # 调用 test_LabelSpreading
    test_LabelSpreading(*data) 

    def test_LabelSpreading_rbf(*data):
        '''
        测试 LabelSpreading 的 rbf 核时,预测性能随 alpha 和 gamma 的变化
        '''
        X,y,unlabeled_indices=data
        # 必须拷贝,后面要用到 y
        y_train=np.copy(y) 
        # 未标记样本的标记设定为 -1
        y_train[unlabeled_indices]=-1 
    
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        alphas=np.linspace(0.01,1,num=10,endpoint=True)
        gammas=np.logspace(-2,2,num=50)
        # 颜色集合,不同曲线用不同颜色
        colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2)) 
        ## 训练并绘图
        for alpha,color in zip(alphas,colors):
            scores=[]
            for gamma in gammas:
                clf=LabelSpreading(max_iter=100,gamma=gamma,alpha=alpha,kernel='rbf')
                clf.fit(X,y_train)
                scores.append(clf.score(X[unlabeled_indices],y[unlabeled_indices]))
            ax.plot(gammas,scores,label=r"$alpha=%s$"%alpha,color=color)
    
        ### 设置图形
        ax.set_xlabel(r"$gamma$")
        ax.set_ylabel("score")
        ax.set_xscale("log")
        ax.legend(loc="best")
        ax.set_title("LabelSpreading rbf kernel")
        plt.show()
        
    # 调用 test_LabelSpreading_rbf
    test_LabelSpreading_rbf(*data) 

    def test_LabelSpreading_knn(*data):
        '''
       测试 LabelSpreading 的 knn 核时,预测性能随 alpha 和 n_neighbors 的变化
        '''
        X,y,unlabeled_indices=data
        # 必须拷贝,后面要用到 y
        y_train=np.copy(y) 
        # 未标记样本的标记设定为 -1
        y_train[unlabeled_indices]=-1 
    
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        alphas=np.linspace(0.01,1,num=10,endpoint=True)
        Ks=[1,2,3,4,5,8,10,15,20,25,30,35,40,50]
        # 颜色集合,不同曲线用不同颜色
        colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2)) 
        ## 训练并绘图
        for alpha,color in zip(alphas,colors):
            scores=[]
            for K in Ks:
                clf=LabelSpreading(kernel='knn',max_iter=100,n_neighbors=K,alpha=alpha)
                clf.fit(X,y_train)
                scores.append(clf.score(X[unlabeled_indices],y[unlabeled_indices]))
            ax.plot(Ks,scores,label=r"$alpha=%s$"%alpha,color=color)
    
        ### 设置图形
        ax.set_xlabel(r"$k$")
        ax.set_ylabel("score")
        ax.legend(loc="best")
        ax.set_title("LabelSpreading knn kernel")
        plt.show()
        
    # 调用 test_LabelSpreading_knn
    test_LabelSpreading_knn(*data) 

  • 相关阅读:
    Redis 常用命令整理
    TCP系列01—概述及协议头格式
    TCP/IP详解--TCP网络传输数据包1460MSS和1448负载
    TCP中报文段大小(MSS)、MTU
    DNS 过滤脚本
    TCP SYN Cookies – DDoS defence
    python virtualenv venv 虚拟环境
    git 命令总结
    王兴三横四纵
    获取国税门户可供下载的资源文档
  • 原文地址:https://www.cnblogs.com/tszr/p/10800480.html
Copyright © 2020-2023  润新知