• 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用


    import numpy as np
    
    from matplotlib import  pyplot as plt
    from sklearn import neighbors, datasets
    from matplotlib.colors import ListedColormap
    from sklearn.neural_network import MLPClassifier
    
    ## 加载数据集
    np.random.seed(0)
    # 使用 scikit-learn  自带的 iris 数据集
    iris=datasets.load_iris() 
    # 使用前两个特征,方便绘图
    X=iris.data[:,0:2] 
    # 标记值
    Y=iris.target 
    data=np.hstack((X,Y.reshape(Y.size,1)))
    # 混洗数据。因为默认的iris 数据集:前50个数据是类别0,中间50个数据是类别1,末尾50个数据是类别2.混洗将打乱这个顺序
    np.random.shuffle(data) 
    X=data[:,:-1]
    Y=data[:,-1]
    train_x=X[:-30]
    train_y=Y[:-30]
    # 最后30个样本作为测试集
    test_x=X[-30:] 
    test_y=Y[-30:]
        
    def plot_classifier_predict_meshgrid(ax,clf,x_min,x_max,y_min,y_max):
        '''
         绘制 MLPClassifier 的分类结果
    
        :param ax:  Axes 实例,用于绘图
        :param clf: MLPClassifier 实例
        :param x_min: 第一维特征的最小值
        :param x_max: 第一维特征的最大值
        :param y_min: 第二维特征的最小值
        :param y_max: 第二维特征的最大值
        :return: None
          '''
        plot_step = 0.02 # 步长
        xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),np.arange(y_min, y_max, plot_step))
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # 绘图
        ax.contourf(xx, yy, Z, cmap=plt.cm.Paired) 
            
    def plot_samples(ax,x,y):
        '''
            绘制二维数据集
    
            :param ax:  Axes 实例,用于绘图
            :param x: 第一维特征
            :param y: 第二维特征
            :return: None
          '''
        n_classes = 3
        # 颜色数组。每个类别的样本使用一种颜色
        plot_colors = "bry" 
        for i, color in zip(range(n_classes), plot_colors):
            idx = np.where(y == i)
            # 绘图
            ax.scatter(x[idx, 0], x[idx, 1], c=color,label=iris.target_names[i], cmap=plt.cm.Paired)
            
    def mlpclassifier_iris():
        '''
        使用 MLPClassifier 预测调整后的 iris 数据集
        '''
        fig=plt.figure()
        ax=fig.add_subplot(1,1,1)
        classifier=MLPClassifier(activation='logistic',max_iter=10000,hidden_layer_sizes=(30,))
        classifier.fit(train_x,train_y)
        train_score=classifier.score(train_x,train_y)
        test_score=classifier.score(test_x,test_y)
        x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
        y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
        plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
        plot_samples(ax,train_x,train_y)
        ax.legend(loc='best')
        ax.set_xlabel(iris.feature_names[0])
        ax.set_ylabel(iris.feature_names[1])
        ax.set_title("train score:%f;test score:%f"%(train_score,test_score))
        plt.show()
        
    mlpclassifier_iris()

    def mlpclassifier_iris_hidden_layer_sizes():
        '''
        使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 hidden_layer_sizes 的影响
    
        :return: None
        '''
        fig=plt.figure()
        # 候选的 hidden_layer_sizes 参数值组成的数组
        hidden_layer_sizes=[(10,),(30,),(100,),(5,5),(10,10),(30,30)] 
        for itx,size in enumerate(hidden_layer_sizes):
            ax=fig.add_subplot(2,3,itx+1)
            classifier=MLPClassifier(activation='logistic',max_iter=10000,hidden_layer_sizes=size)
            classifier.fit(train_x,train_y)
            train_score=classifier.score(train_x,train_y)
            test_score=classifier.score(test_x,test_y)
            x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
            y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
            plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
            plot_samples(ax,train_x,train_y)
            ax.legend(loc='best')
            ax.set_xlabel(iris.feature_names[0])
            ax.set_ylabel(iris.feature_names[1])
            ax.set_title("layer_size:%s;train score:%f;test score:%f"%(size,train_score,test_score))
        plt.show()
        
    mlpclassifier_iris_hidden_layer_sizes()

    def mlpclassifier_iris_ativations():
        '''
        使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 activation 的影响
        '''
        fig=plt.figure()
        # 候选的激活函数字符串组成的列表
        ativations=["logistic","tanh","relu"] 
        for itx,act in enumerate(ativations):
            ax=fig.add_subplot(1,3,itx+1)
            classifier=MLPClassifier(activation=act,max_iter=10000,hidden_layer_sizes=(30,))
            classifier.fit(train_x,train_y)
            train_score=classifier.score(train_x,train_y)
            test_score=classifier.score(test_x,test_y)
            x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
            y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
            plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
            plot_samples(ax,train_x,train_y)
            ax.legend(loc='best')
            ax.set_xlabel(iris.feature_names[0])
            ax.set_ylabel(iris.feature_names[1])
            ax.set_title("activation:%s;train score:%f;test score:%f"%(act,train_score,test_score))
        plt.show()
        
    mlpclassifier_iris_ativations()

    def mlpclassifier_iris_algorithms():
        '''
        使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 algorithm 的影响
    
        :return: None
        '''
        fig=plt.figure()
        algorithms=["lbfgs","sgd","adam"] # 候选的算法字符串组成的列表
        for itx,algo in enumerate(algorithms):
            ax=fig.add_subplot(1,3,itx+1)
            classifier=MLPClassifier(activation="tanh",max_iter=10000,hidden_layer_sizes=(30,),solver=algo)
            classifier.fit(train_x,train_y)
            train_score=classifier.score(train_x,train_y)
            test_score=classifier.score(test_x,test_y)
            x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
            y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
            plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
            plot_samples(ax,train_x,train_y)
            ax.legend(loc='best')
            ax.set_xlabel(iris.feature_names[0])
            ax.set_ylabel(iris.feature_names[1])
            ax.set_title("algorithm:%s;train score:%f;test score:%f"%(algo,train_score,test_score))
        plt.show()
        
    mlpclassifier_iris_algorithms()

    def mlpclassifier_iris_eta():
        '''
        使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的学习率的影响
        '''
        fig=plt.figure()
        etas=[0.1,0.01,0.001,0.0001] # 候选的学习率值组成的列表
        for itx,eta in enumerate(etas):
            ax=fig.add_subplot(2,2,itx+1)
            classifier=MLPClassifier(activation="tanh",max_iter=1000000,
            hidden_layer_sizes=(30,),solver='sgd',learning_rate_init=eta)
            classifier.fit(train_x,train_y)
            iter_num=classifier.n_iter_
            train_score=classifier.score(train_x,train_y)
            test_score=classifier.score(test_x,test_y)
            x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
            y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
            plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
            plot_samples(ax,train_x,train_y)
            ax.legend(loc='best')
            ax.set_xlabel(iris.feature_names[0])
            ax.set_ylabel(iris.feature_names[1])
            ax.set_title("eta:%f;train score:%f;test score:%f;iter_num:%d"%(eta,train_score,test_score,iter_num))
        plt.show()
        
    mlpclassifier_iris_eta()

  • 相关阅读:
    【C#】最完整的IIS添加WCF配置
    IIS配置中增加对WCF程序的支持svc(IIS10中添加WCF支持几种方法小结)
    ASP.NET C#各种数据库连接字符串大全——SQLServer、Oracle、Access
    记一次 .NET 某医院HIS系统 CPU爆高分析(Windbg)
    C#调用Win32 API 的方法
    闲无聊,发个winform中使用html编辑器的方案
    使用非托管 DLL 函数
    flask中的CBV和FBV
    2.6 CSS3其他特性(了解)
    2.5 CSS3盒子模型
  • 原文地址:https://www.cnblogs.com/tszr/p/10799600.html
Copyright © 2020-2023  润新知