• 吴裕雄 python深度学习与实践(17)


    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import time
    
    # 声明输入图片数据,类别
    x = tf.placeholder('float', [None, 784])
    y_ = tf.placeholder('float', [None, 10])
    # 输入图片数据转化
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    #第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核
    filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
    bias1 = tf.Variable(tf.truncated_normal([6]))
    conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
    h_conv1 = tf.nn.relu(conv1 + bias1)
    
    maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
    bias2 = tf.Variable(tf.truncated_normal([16]))
    conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
    h_conv2 = tf.nn.relu(conv2 + bias2)
    
    maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
    bias3 = tf.Variable(tf.truncated_normal([120]))
    conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
    h_conv3 = tf.nn.relu(conv3 + bias3)
    
    # 全连接层
    # 权值参数
    W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
    # 偏置值
    b_fc1 = tf.Variable(tf.truncated_normal([80]))
    # 将卷积的产出展开
    h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
    # 神经网络计算,并添加relu激活函数
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    
    # 输出层,使用softmax进行多分类
    W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
    b_fc2 = tf.Variable(tf.truncated_normal([10]))
    y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    # 损失函数
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    # 使用GDO优化算法来调整参数
    train_step = tf.train.GradientDescentOptimizer(0.0001).minimize(cross_entropy)
    
    sess = tf.InteractiveSession()
    # 测试正确率
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    # 所有变量进行初始化
    sess.run(tf.initialize_all_variables())
    
    # 获取mnist数据
    mnist_data_set = input_data.read_data_sets('F:\TensorFlow_deep_learn\MNIST\', one_hot=True)
    
    # 进行训练
    start_time = time.time()
    for i in range(20000):
        # 获取训练数据
        batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
    
        # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率
        if i % 2 == 0:
            train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
            print("step %d, training accuracy %g" % (i, train_accuracy))
            # 计算间隔时间
            end_time = time.time()
            print('time: ', (end_time - start_time))
            start_time = end_time
        # 训练数据
        train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
    
    # 关闭会话
    sess.close()

    import time
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    #初始化单个卷积核上的偏置值
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    #输入特征x,用卷积核W进行卷积运算,strides为卷积核移动步长,
    #padding表示是否需要补齐边缘像素使输出图像大小不变
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    #对x进行最大池化操作,ksize进行池化的范围,
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    sess = tf.InteractiveSession()
    # 声明输入图片数据,类别
    x = tf.placeholder('float32', [None, 784])
    y_ = tf.placeholder('float32', [None, 10])
    # 输入图片数据转化
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    W_conv1 = weight_variable([5, 5, 1, 6])
    b_conv1 = bias_variable([6])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    W_conv2 = weight_variable([5, 5, 6, 16])
    b_conv2 = bias_variable([16])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    W_fc1 = weight_variable([7*7*16,120])
    # 偏置值
    b_fc1 = bias_variable([120])
    # 将卷积的产出展开
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 16])
    # 神经网络计算,并添加relu激活函数
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    W_fc2 = weight_variable([120,10])
    b_fc2 = bias_variable([10])
    y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    
    # 代价函数
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    # 使用Adam优化算法来调整参数
    train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(cross_entropy)
    
    # 测试正确率
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))
    
    # 所有变量进行初始化
    sess.run(tf.initialize_all_variables())
    
    # 获取mnist数据
    mnist_data_set = input_data.read_data_sets('F:\TensorFlow_deep_learn\MNIST\', one_hot=True)
    c = []
    
    # 进行训练
    start_time = time.time()
    for i in range(1000):
        # 获取训练数据
        batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
    
        # 每迭代10个 batch,对当前训练数据进行测试,输出当前预测准确率
        if i % 2 == 0:
            train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
            c.append(train_accuracy)
            print("step %d, training accuracy %g" % (i, train_accuracy))
            # 计算间隔时间
            end_time = time.time()
            print('time: ', (end_time - start_time))
            start_time = end_time
        # 训练数据
        train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
    
    
    sess.close()
    plt.plot(c)
    plt.tight_layout()
    plt.savefig('F:\cnn-tf-cifar10-2.png', dpi=200)
    plt.show()

    import time
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    #初始化单个卷积核上的偏置值
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    #输入特征x,用卷积核W进行卷积运算,strides为卷积核移动步长,
    #padding表示是否需要补齐边缘像素使输出图像大小不变
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    #对x进行最大池化操作,ksize进行池化的范围,
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    sess = tf.InteractiveSession()
    # 声明输入图片数据,类别
    x = tf.placeholder('float32', [None, 784])
    y_ = tf.placeholder('float32', [None, 10])
    # 输入图片数据转化
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    
    W_fc1 = weight_variable([7*7*64,1024])
    # 偏置值
    b_fc1 = bias_variable([1024])
    # 将卷积的产出展开
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    # 神经网络计算,并添加relu激活函数
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    W_fc2 = weight_variable([1024,10])
    b_fc2 = bias_variable([10])
    y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    
    # 代价函数
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    # 使用Adam优化算法来调整参数
    train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(cross_entropy)
    
    # 测试正确率
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))
    
    # 所有变量进行初始化
    sess.run(tf.initialize_all_variables())
    
    # 获取mnist数据
    mnist_data_set = input_data.read_data_sets('F:\TensorFlow_deep_learn\MNIST\', one_hot=True)
    c = []
    
    # 进行训练
    start_time = time.time()
    for i in range(1000):
        # 获取训练数据
        batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
    
        # 每迭代10个 batch,对当前训练数据进行测试,输出当前预测准确率
        if i % 2 == 0:
            train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
            c.append(train_accuracy)
            print("step %d, training accuracy %g" % (i, train_accuracy))
            # 计算间隔时间
            end_time = time.time()
            print('time: ', (end_time - start_time))
            start_time = end_time
        # 训练数据
        train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
    
    
    sess.close()
    plt.plot(c)
    plt.tight_layout()
    plt.savefig('F:\cnn-tf-cifar10-1.png', dpi=200)
    plt.show()

    import time
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    #初始化单个卷积核上的偏置值
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    #输入特征x,用卷积核W进行卷积运算,strides为卷积核移动步长,
    #padding表示是否需要补齐边缘像素使输出图像大小不变
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    #对x进行最大池化操作,ksize进行池化的范围,
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    sess = tf.InteractiveSession()
    # 声明输入图片数据,类别
    x = tf.placeholder('float32', [None, 784])
    y_ = tf.placeholder('float32', [None, 10])
    # 输入图片数据转化
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    
    W_fc1 = weight_variable([7*7*64,1024])
    # 偏置值
    b_fc1 = bias_variable([1024])
    # 将卷积的产出展开
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    # 神经网络计算,并添加relu激活函数
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    W_fc2 = weight_variable([1024,128])
    b_fc2 = bias_variable([128])
    h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2)
    
    W_fc3 = weight_variable([128,10])
    b_fc3 = bias_variable([10])
    y_conv = tf.nn.softmax(tf.matmul(h_fc2, W_fc3) + b_fc3)
    # 代价函数
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    # 使用Adam优化算法来调整参数
    train_step = tf.train.GradientDescentOptimizer(1e-5).minimize(cross_entropy)
    
    # 测试正确率
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))
    
    # 所有变量进行初始化
    sess.run(tf.initialize_all_variables())
    
    # 获取mnist数据
    mnist_data_set = input_data.read_data_sets('F:\TensorFlow_deep_learn\MNIST\', one_hot=True)
    c = []
    
    # 进行训练
    start_time = time.time()
    for i in range(1000):
        # 获取训练数据
        batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
    
        # 每迭代10个 batch,对当前训练数据进行测试,输出当前预测准确率
        if i % 2 == 0:
            train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
            c.append(train_accuracy)
            print("step %d, training accuracy %g" % (i, train_accuracy))
            # 计算间隔时间
            end_time = time.time()
            print('time: ', (end_time - start_time))
            start_time = end_time
        # 训练数据
        train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
    
    sess.close()
    plt.plot(c)
    plt.tight_layout()
    plt.savefig('F:\cnn-tf-cifar10-11.png', dpi=200)
    plt.show()

  • 相关阅读:
    css的三种方法以及优先级说明
    form表单中的label标签
    html 中 a 标签 mailto的用法
    Hexo + GitHub Pages搭建博客
    Sublime Text3使用指南
    IMU数据融合:互补,卡尔曼和Mahony滤波
    正点原子STM32探索者学习笔记4
    正点原子STM32探索者学习笔记3
    正点原子STM32探索者学习笔记2
    正点原子STM32探索者学习笔记1
  • 原文地址:https://www.cnblogs.com/tszr/p/10569822.html
Copyright © 2020-2023  润新知