• tensorflow 学习纪录(持续更新)


     1 import tensorflow as tf
     2 import numpy as np
     3 
     4 #tensor = tf.constant([[1,2,3,4,5,6,7,8],[1,2,3,4,5,6,7,8]])
     5 tensor = tf.placeholder(tf.int32, [2,8])
     6 
     7 with tf.Session() as sess:
     8     sess.run(tf.global_variables_initializer())
     9     print sess.run(tensor,feed_dict={tensor:[[1,2,3,4,5,6,7,8],[1,2,3,4,5,6,7,8]]})
    10     print sess.run(tensor)
    11     tensorReshape = tf.reshape(tensor,[-1,4])
    12     print sess.run(tensorReshape)

    print sess.run(tensor) 会报错,

    InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype int32 and shape [2,8]
    [[Node: Placeholder = Placeholder[dtype=DT_INT32, shape=[2,8], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

    原因:feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失。

    tensorflow 加减op实验结果

    y_out = tf.constant([1.0,2.0,3.0],shape=[3])
    #y_out = tf.constant([[1.0,2.0,3.0],[2.0,3.0,4.0]],shape=[2,3])
    yy = tf.constant([[1.0,2.0,3.0],[4.0,5.0,6.0],[1.0,2.0,3.0]],shape=[3,3])
    print sess.run(y_out+yy)

    二维和三维矩阵相乘

    tf.matmul(M1,M2)

    三维*二维

        M1 = tf.Variable(tf.random_normal([2,3,4])

        M2 = tf.Variable(tf.random_normal([5,4])

        N = tf.einsum('ijk,lk->ijl',M1,M2)

    tensorflow attention

    tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation 'Adadelta/update_post_embedding/Cast': Could not satisfy explicit device specification '' because the node was colocated with a group of nodes that required incompatible device '/job:localhost/replica:0/task:0/device:GPU:0'

    安装完tensorflow-gpu版本后,跑程序会报这样的错,是因为GPU不支持一些op运算。

    解决办法是安装对应的tensorflow cpu版本就完美解决了。

    参考:https://github.com/cysmith/neural-style-tf/issues/18

    tensorflow-gpu 1.4.1 不支持这两个函数

    #optimizer = tf.train.AdadeltaOptimizer(learning_rate=1)
    #optimizer = tf.train.AdagradOptimizer(learning_rate=0.1)

  • 相关阅读:
    迭代模式
    HackSeven Canvas上的动画
    模板模式
    适配器模式
    豆瓣推荐纪录片
    二手手机十分管用的检查方法
    传参的四种方法
    守夜人誓言+考研誓言
    网络小说分享
    阿里巴巴Java开发手册(详尽版) pdf
  • 原文地址:https://www.cnblogs.com/tsw123/p/9190824.html
Copyright © 2020-2023  润新知