• floyd算法的应用1


    暑假,小哼准备去一些城市旅游。有些城市之间有公路,有些城市之间则没有,如下图。为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程。

    081028xjgvimgz7882qdu7.png

    上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。


           现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0,具体如下:
    081028o2n5ebn8hdeh9e5l.png



    代码:

    #include <stdio.h>
    int main()
    {
        int e[10][10],k,i,j,n,m,t1,t2,t3;
        int inf=99999999; //用inf(infinity的缩写)存储一个我们认为的正无穷值
        //读入n和m,n表示顶点个数,m表示边的条数
        scanf("%d %d",&n,&m);
                                  
        //初始化
        for(i=1;i<=n;i++)
            for(j=1;j<=n;j++)
                if(i==j) e[i][j]=0;
                  else e[i][j]=inf;
        //读入边
        for(i=1;i<=m;i++)
        {
            scanf("%d %d %d",&t1,&t2,&t3);
            e[t1][t2]=t3;
        }
                                  
        //Floyd-Warshall算法核心语句
        for(k=1;k<=n;k++)
            for(i=1;i<=n;i++)
                for(j=1;j<=n;j++)
                    if(e[i][j]>e[i][k]+e[k][j] )
                        e[i][j]=e[i][k]+e[k][j];
                                  
        //输出最终的结果
        for(i=1;i<=n;i++)
        {
         for(j=1;j<=n;j++)
            {
                printf("%10d",e[i][j]);
            }
            printf(" ");
        }
                                  
        return 0;
    }



    有一点需要注意的是:如何表示正无穷。我们通常将正无穷定义为99999999,

    因为这样即使两个正无穷相加,其和仍然不超过int类型的范围(C语言int类型可以存储的最大正整数是2147483647)。

    在实际应用中最好估计一下最短路径的上限,只需要设置比它大一点既可以。例如有100条边,每条边不超过100的话,

    只需将正无穷设置为10001即可。如果你认为正无穷和其它值相加得到一个大于正无穷的数是不被允许的话,

    我们只需在比较的时候加两个判断条件就可以了,请注意下面代码中带有下划线的语句。

    1
    2
    3
    4
    5
    6
    //Floyd-Warshall算法核心语句
    for(k=1;k<=n;k++)
      for(i=1;i<=n;i++)
          for(j=1;j<=n;j++)
            if(e[i][k]<inf && e[k][j]<inf && e[i][j]>e[i][k]+e[k][j])
                e[i][j]=e[i][k]+e[k][j];


    上面代码的输入数据样式为:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    4 8
    1 2 2
    1 3 6
    1 4 4
    2 3 3
    3 1 7
    3 4 1
    4 1 5
    4 3 12

    结果:






  • 相关阅读:
    django QuerySet对象转换成字典对象
    HTTP请求中三种参数类型
    django开发中遇到的问题
    win7下mysql8.0.12解压缩版安装
    Django小部件
    程序员上班有什么提高效率的技巧?
    Android应用AsyncTask处理机制详解及源码分析
    Android常用工具类
    Android Volley解析
    Android 开发有哪些新技术出现?
  • 原文地址:https://www.cnblogs.com/tryitboy/p/4231169.html
Copyright © 2020-2023  润新知