import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split import numpy as np train_step = 5 train_path = 'train.csv' is_train = False learn_rate = 0.0001 epochs = 10 data = pd.read_csv(train_path) # 取部分特征字段用于分类,并将所有缺失的字段填充为0 data['Sex'] = data['Sex'].apply(lambda s: 1 if s == 'male' else 0) data = data.fillna(0) dataset_X = data[['Sex', 'Age', 'Pclass', 'SibSp', 'Parch', 'Fare']] dataset_X = dataset_X.as_matrix() # 两种分类分别是幸存和死亡,'Survived'字段是其中一种分类的标签 # 新增'Deceased'字段表示第二种分类的标签,取值为'Survived'字段取非 data['Deceased'] = data['Survived'].apply(lambda s: int(not s)) dataset_Y = data[['Deceased', 'Survived']] dataset_Y = dataset_Y.as_matrix() # 使用sklearn的train_test_split函数将标记数据切分为‘训练数据集和验证数据集’ # 将全部标记数据随机洗牌后切分,其中验证数据占20%,由test_size参数指定 X_train, X_test, Y_train, Y_test = train_test_split(dataset_X, dataset_Y, test_size=0.2, random_state=42) # 声明输入数据点位符 X = tf.placeholder(tf.float32, shape=[None, 6]) Y = tf.placeholder(tf.float32, shape=[None, 2]) # 声明变量(参数) W = tf.Variable(tf.random_normal([6, 2]), name='weights') b = tf.Variable(tf.zeros([2]), name='bias') # 构造前向传播计算图 y_pred = tf.nn.softmax(tf.matmul(X, W) + b) # 使用交叉熵作为代价函数 Y * log(y_pred + e-10),程序中e-10,防止y_pred十分接近0或者1时, # 计算(log0)会得到无穷,导致非法,进一步导致无法计算梯度,迭代陷入崩溃。 cross_entropy = -tf.reduce_sum(Y * tf.log(y_pred + 1e-10), reduction_indices=1) # 批量样本的代价为所有样本交叉熵的平均值 cost = tf.reduce_mean(cross_entropy) # 使用随机梯度下降算法优化器来最小化代价,系统自动构建反向传播部分的计算图 train_op = tf.train.GradientDescentOptimizer(learn_rate).minimize(cost) saver = tf.train.Saver() if is_train: with tf.Session() as sess: writer = tf.summary.FileWriter('logfile', sess.graph) # 初始化所有变量,必须最先执行 tf.global_variables_initializer().run() # 以下为训练迭代,迭代10轮 for epoch in range(10): total_loss = 0 for i in range(len(X_train)): _, loss = sess.run([train_op, cost], feed_dict={X:[X_train[i]], Y:[Y_train[i]]}) total_loss += loss print('Epoch: %04d, total loss=%.9f' % (epoch + 1, total_loss)) # 保存model if (epoch + 1) % train_step == 0: save_path = saver.save(sess, './model/model.ckpt', global_step=epoch + 1) print('Training complete!') pred = sess.run(y_pred, feed_dict={X: X_test}) # np.argmax的axis=1表示第2轴最大值的索引(这里表示列与列对比,最大值的索引) correct = np.equal(np.argmax(pred, axis=1), np.argmax(Y_test, axis=1)) accuracy = np.mean(correct.astype(np.float32)) print("Accuracy on validation set: %.9f" % accuracy) else: # 恢复model,继续训练 with tf.Session() as sess1: # 从'checkpoint'文件中读出最新存档的路径 ckpt = tf.train.get_checkpoint_state('./model') if ckpt and ckpt.model_checkpoint_path: saver.restore(sess1, ckpt.model_checkpoint_path) print('restore model sucess!') else: sys(0) print('continue train …………') for epoch in range(epochs): total_loss = 0 for i in range(len(X_train)): _, loss = sess1.run([train_op, cost], feed_dict={X:[X_train[i]], Y:[Y_train[i]]}) total_loss += loss print('Epoch: %04d, total loss=%.9f' % (epoch + 1, total_loss)) # 保存model if (epoch + 1) % train_step == 0: save_path = saver.save(sess1, './model/model.ckpt', global_step=epoch + 1) print('Training complete!') pred = sess1.run(y_pred, feed_dict={X: X_test}) # np.argmax的axis=1表示第2轴最大值的索引(这里表示列与列对比,最大值的索引) correct = np.equal(np.argmax(pred, axis=1), np.argmax(Y_test, axis=1)) accuracy = np.mean(correct.astype(np.float32)) print("Accuracy on validation set: %.9f" % accuracy) # 恢复model参数 with tf.Session() as sess2: # 从'checkpoint'文件中读出最新存档的路径 print('restore lastest model, compute Accuracy!') ckpt = tf.train.get_checkpoint_state('./model') if ckpt and ckpt.model_checkpoint_path: saver.restore(sess2, ckpt.model_checkpoint_path) pred = sess2.run(y_pred, feed_dict={X: X_test}) # np.argmax的axis=1表示第2轴最大值的索引(这里表示列与列对比,最大值的索引) correct = np.equal(np.argmax(pred, axis=1), np.argmax(Y_test, axis=1)) accuracy = np.mean(correct.astype(np.float32)) print("Accuracy on validation set: %.9f" % accuracy)
TensorFlow自带的可视化工具TensorBoard
在当前目录的命令行下键入:tensorboard --logdir=logfile
根据命令行的提示,在浏览器里输入相应的网址。