• POJ #1141


    A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most""least" problems can be solved using DP..

    Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html

    There's an important details to AC: in case of "())", there are 2 solutions: ()() and (()). For the AC code, the former one is preferred.

    //    1141
    //    http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html
    //
    #include <stdio.h>
    #include <string.h>
    #include <memory.h>
    
    #define MAX_LEN 101 
     
     bool isMatched(char *in, int i, int j)
     {
         return (in[i] == '(' && in[j] == ')') || (in[i] == '[' && in[j] == ']');
     }
     void printPath(int path[MAX_LEN][MAX_LEN], int i, int j, char in[MAX_LEN])
    {
         int sInx = path[i][j];
         if (sInx == -1)
         {
             if (i == j)
             {
                 //printf("Complete @ %d
    ", i);
                 switch (in[i])
                 {
                 case '(': 
                 case ')': printf("()"); break;
                 case '[': 
                 case ']': printf("[]"); break;
                 }
                 return;
            }        
             else if (i + 1 == j)
             {
                 //printf("Already matched: [%d, %d]
    ", i, j);
                 printf("%c%c", in[i], in[j]);
                 return;
             }
             else if ((i+1) < j)
             {
                 printf("%c", in[i]);
                 printPath(path, i + 1, j - 1, in);
                 printf("%c", in[j]);
             }
         }
         else
         {
             printPath(path, 0, path[i][j], in);
             //printf("Break @ %d
    ", path[i][j], in);
             printPath(path, path[i][j] + 1, j, in);
         }
     }
     
     void calc(char in[MAX_LEN])
     {
         unsigned slen = strlen(in);
         if (slen == 0)
         {
             printf("
    ");
             return;
         }
         else if (slen > 0)
         {
             int dp[MAX_LEN][MAX_LEN];
             int path[MAX_LEN][MAX_LEN];
     
             //    Init
             for (int i = 0; i < MAX_LEN; i ++)
             for (int j = 0; j < MAX_LEN; j++)
             {
                 dp[i][j] = 0xFFFFFF;
                 path[i][j] = -1;
             }
     
             //    Def: dp[i][j] = min num of chars to add, from i to j
             //    Recurrence relation:
             //    1. dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j]), where k in (i..j)
             //    2. dp[i][j] = dp[i+1][j-1], <IF in[i]:in[j] = [] or ()>
     
             //    i..j is range, k is interval
             for (int k = 0; k < slen; k++)    // NOTE: this is a bottom-up DP. We have to go from 0 to slen as interval
             for (int i = 0, j = i + k; i < slen - k; i ++, j ++)
             {
                 if (i == j)
                 {
                     dp[i][j] = 1;
                     path[i][j] = -1;
                     continue;
                 }
                 bool bIsMatched = isMatched(in, i, j);
                 if (bIsMatched)        // eq 2
                 {
                     if (k == 1)        // length == 2 
                     {
                         dp[i][j] = 0;    
                         path[i][j] = -1;
                         continue;
                     }
                     else if (k > 1)    // length > 2
                     {
                         dp[i][j] = dp[i + 1][j - 1];                                        
                         path[i][j] = -1;    // we don't split matched pair
                         //    A: we still go ahead with eq1
                     }                
                 }
                 //else    // eq1
                 {
                     //    t is iterator of split index
                     for (int t = i; t < j; t++)
                     {
                         int newVal = dp[i][t] + dp[t + 1][j];
                         if (newVal <= dp[i][j]) // Label A: we prefer splitted solution
                         {
                             dp[i][j] = newVal;
                             path[i][j] = t;
                         }
                     }
                 }
             }
             printPath(path, 0, slen - 1, in);
         } //    if (slen > 0)
     }
     
     int main()
    {
         char in[MAX_LEN] = { 0 };
         gets(in);
         calc(in);
         printf("
    ");
         return 0;
    }
    View Code
  • 相关阅读:
    查找谁调用了BTE事件
    ABAP标准屏幕调用选择屏幕
    CG3Y&nbsp;CG3Z&nbsp;一个上传一个下载
    捕获BDC报的错误
    MM主要的表和主要字段
    获取随机数&nbsp;&nbsp;QF05_RANDOM_INTEGER
    Query-Convert&nbsp;QuickView是灰…
    SAP_整体修改一个内表的某一个字段…
    程序员永远的痛之字符编码的奥秘
    关于绑定变量、关于占位符
  • 原文地址:https://www.cnblogs.com/tonix/p/3806001.html
Copyright © 2020-2023  润新知