• redis专题之缓存存在的几大问题(穿透、击穿、雪崩)


    在使用redis做缓存中间件时会存在以下几个大问题:

    1. 缓存粒度问题:未合适的控制好数据缓存的粒度(全部数据和部分数据的粒度);
    2. 缓存击穿问题:数据刚好失效或者所需的数据根本不存在缓存中,此时来了大量的并发请求;
    3. 缓存穿透问题:数据库和缓存中都没有这条数据;
    4. 缓存雪崩问题:由于前两个问题及时未处理导致请求全部被直接打到数据库中,导致机器宕机;

    1.缓存粒度控制

    通俗来讲,缓存粒度问题就是我们在使用缓存时,是将所有数据缓存还是缓存部分数据?

    缓存粒度问题是一个容易被忽视的问题,如果使用不当,可能会造成很多无用空间的浪费,可能会造成网络带宽的浪费,可能会造成代码通用性较差等情况,必须学会综合数据通用性、空间占用比、代码维护性 三点评估取舍因素权衡使用。

    2.缓存穿透问题

     缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,并且出于容错考虑, 如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。

    可能造成原因:

    • 业务代码自身问题
    • 恶意攻击。爬虫等等

    危害

    对底层数据源压力过大,有些底层数据源不具备高并发性。  例如mysql一般来说单台能够扛1000-QPS就已经很不错了

    解决方案

    1)缓存空对象

    public class NullValueResultDO implements Serializable{
         private static final long serialVersionUID = -6550539547145486005L;
    }
     
    public class UserManager {
         UserDAO userDAO;
         LocalCache localCache;
     
         public UserDO getUser(String userNick) {
              Object object = localCache.get(userNick);
              if(object != null) {
                   if(object instanceof NullValueResultDO) {
                        return null;
                   }
                   return (UserDO)object;
              } else {
                   User user = userDAO.getUser(userNick);
                   if(user != null) {
                        localCache.put(userNick,user);
                   } else {
                        localCache.put(userNick, new NullValueResultDO());
                   }
                   return user;
              }
         }          
    }

    2)布隆过滤器

    (1)Google布隆过滤器的缺点

    基于JVM内存的一种布隆过滤器

    重启即失效

    本地内存无法用在分布式场景

    不支持大数据量存储

    (2)Redis布隆过滤器

    可扩展性Bloom过滤器:一旦Bloom过滤器达到容量,就会在其上创建一个新的过滤器

    不存在重启即失效或者定时任务维护的成本:基于Google实现的布隆过滤器需要启动之后初始化布隆过滤器

    缺点:需要网络IO,性能比Google布隆过滤器低

    3.缓存击穿.热点key重建缓存问题

    缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力

    我们知道,使用缓存,如果获取不到,才会去数据库里获取。但是如果是热点 key,访问量非常的大,数据库在重建缓存的时候,会出现很多线程同时重建的情况。因为高并发导致的大量热点的 key 在重建还没完成的时候,不断被重建缓存的过程,由于大量线程都去做重建缓存工作,导致服务器拖慢的情况。

    解决方案

    1.互斥锁

    第一次获取缓存的时候,加一个锁,然后查询数据库,接着是重建缓存。这个时候,另外一个请求又过来获取缓存,发现有个锁,这个时候就去等待,之后都是一次等待的过程,直到重建完成以后,锁解除后再次获取缓存命中。

    public String getKey(String key){
        String value = redis.get(key);
        if(value == null){
            String mutexKey = "mutex:key:"+key; //设置互斥锁的key
            if(redis.set(mutexKey,"1","ex 180","nx")){ //给这个key上一把锁,ex表示只有一个线程能执行,过期时间为180秒
              value = db.get(key);
              redis.set(key,value);
              redis.delete(mutexKety);
      }else{
            // 其他的线程休息100毫秒后重试
            Thread.sleep(100);
            getKey(key);
      }
     }
     return value;
    }
    

    互斥锁的优点是思路非常简单,具有一致性,但是互斥锁也有一定的问题,就是大量线程在等待的问题。存在死锁的可能性。

    2.使用setnx

    setnx key value 只有在 key 不存在时设置 key 的值。

    因为可能存在获取到锁的业务突然挂掉了,那么nx锁永远无法释放,那么很容易造成死锁,
    故需要设置一个过期时间,时间到了,就会自动释放锁;而且nx和ex不能分开写,保证原子性。

    @Test
        public void testRedis(){
            Jedis jedis=new Jedis("111.111.111.94",6379);
            jedis.auth("123456");
            SetParams setParams=new SetParams();
            setParams.ex(6);  //setex     设置值的同时设置过期时间
            setParams.nx();  //
            String s = UUID.randomUUID().toString();
            String lock = jedis.set("lock", s,setParams);
    //        Long setnx = jedis.setnx("lock", "value2");
    //        if(setnx==1){
    //            jedis.expire("lock",10);
    //        }
    
            System.out.println(lock);
        }
    

    3.分布式锁redisson

    redisson分布式锁

    4.自己实现普通的分布式锁

    @Component
    public class RedisLock implements Lock {
    
    
        @Autowired
        private JedisPool jedisPool;
    
        private static final String key="lock";
    
        private ThreadLocal<String> threadLocal=new ThreadLocal<>();
    
        private static AtomicBoolean isHappened = new AtomicBoolean(true);
    
        //加锁
        @Override
        public void lock() {
            boolean b = tryLock();  //尝试加锁
            if(b){
                //拿到了锁
                return;
            }
            try {
                Thread.sleep(50);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            lock();
        }
    
        @Override
        public void lockInterruptibly() throws InterruptedException {
    
        }
    
        //尝试加锁
        @Override
        public boolean tryLock() {
            SetParams setParams=new SetParams();
            setParams.ex(2);  //2s
            setParams.nx();
            String s = UUID.randomUUID().toString();
            Jedis resource = jedisPool.getResource();
            String lock = resource.set(key, s,setParams);
    //        String lock = resource.set(key,s,"NX","PX",5000);
            resource.close();
            if("OK".equals(lock)){
                //拿到了锁
                threadLocal.set(s);
                if(isHappened.get()){
                    ThreadUtil.newThread(new MyRUnble(jedisPool)).start();
                    isHappened.set(false);
                }
                return true;
            }
            return false;
        }
    
    
    
    
        static class MyRUnble implements Runnable{
    
            private JedisPool jedisPool;
            public MyRUnble(JedisPool jedisPool){
                this.jedisPool=jedisPool;
            }
            @Override
            public void run() {
                Jedis jedis = jedisPool.getResource();
                while (true){
                    Long ttl = jedis.ttl(key);
                    if(ttl!=null && ttl>0){
                        jedis.expire(key, (int) (ttl+1));
                    }
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    
        @Override
        public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
            return false;
        }
    
    
        //第一步判断设置时候的value 和 此时redis的value是否相同
        //解锁
        @Override
        public void unlock() throws Exception{
            String script="if redis.call("get",KEYS[1])==ARGV[1] then
    " +
                    "    return redis.call("del",KEYS[1])
    " +
                    "else
    " +
                    "    return 0
    " +
                    "end";
    
            Jedis resource = jedisPool.getResource();
            resource.del(key);
    //        Object eval = resource.eval(script, Arrays.asList(key), Arrays.asList(threadLocal.get()));
    //        if(Integer.valueOf(eval.toString())==0){
    //            resource.close();
    //            throw new Exception("解锁失败");
    //        }
            resource.close();
        }
    
        @Override
        public Condition newCondition() {
            return null;
        }
    
    }
    

    4.缓存雪崩问题

    缓存雪崩是指机器宕机或在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重雪崩。

    解决办法  

    1:在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

    2:做二级缓存,A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期

    3:不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。

    4:如果缓存数据库是分布式部署,将热点数据均匀分布在不同搞得缓存数据库中。

    5:搭建高可用集群

  • 相关阅读:
    python excel 像 Excel 一样使用 python 进行数据分析
    ubuntu 系统分区
    ubuntu 配置和修改ip地址
    yum centos 修改镜像源
    centos6 安装 docker 问题
    Feign 的简单使用(2)
    feign client 的简单使用(1)
    xsync
    canal 配置
    javascript之DOM编程正则表达式引入
  • 原文地址:https://www.cnblogs.com/tongxuping/p/12357763.html
Copyright © 2020-2023  润新知