• poj 1149 PIGS【最大流经典建图】


    PIGS
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 18727   Accepted: 8508

    Description

    Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. 
    All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
    More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. 
    An unlimited number of pigs can be placed in every pig-house. 
    Write a program that will find the maximum number of pigs that he can sell on that day.

    Input

    The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
    The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
    The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
    A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

    Output

    The first and only line of the output should contain the number of sold pigs.

    Sample Input

    3 3
    3 1 10
    2 1 2 2
    2 1 3 3
    1 2 6

    Sample Output

    7

    网络流问题的难点还是在于建图

    题意:一个工人在养猪场工作,他负责卖猪,现在有m个猪圈和n个顾客,每个猪圈的容量没有限制,但是工人没有猪圈的钥匙,而前来的顾客有这些猪圈中一些猪圈的钥匙,每个顾客来之后会打开所有他有钥匙的猪圈,然后买完自己想要买的猪的个数后,关闭所有他打开的猪圈,顾客总是一个接一个的来,当猪圈打开的时候,工人可以随意挪动打开的猪圈中的猪(只能在打开的猪圈中相互移动)问工人一天最多卖出去多少猪

    输入:开头第一行两个整数m,n分别代表猪圈数和顾客数,接下来一行m个数分别表示对应的猪圈中猪的个数,在接下来n行每行第一个数a,表示接下来a个数意思是当前行(第i行)i顾客所持的猪圈的钥匙,最后一个数b代表这个顾客要买b头猪

    题解:1、超级源点连接第一个到达j猪圈的顾客 权值为第j个猪圈的猪的头数,
    2、因为每个同时打开的猪圈之间的猪可以相互走动,所以所有连接到j猪圈的顾客相互连接容量为无穷大
    3、处理重边,比如说第一个猪圈的第一个顾客和第二个猪圈的第一个顾客都是cus1,第三个猪圈的第一个顾客是cus2,所以就有源点到cus1的重边,此时将这两条边合并即可,流量为二者流量和
    4、每一个顾客连接超级汇点

    #include<stdio.h>
    #include<string.h>
    #include<stack>
    #include<queue>
    #include<algorithm>
    #include<vector>
    #define MAXM 100100
    #define MAX 10010
    #define INF 0x7ffff
    using namespace std;
    vector<int>map[MAXM];
    int n,m,a,b[MAX];
    int ans,head[MAX];
    int cur[MAX],dis[MAX];
    int vis[MAX]; 
    int pig[MAX];
    struct node
    {
    	int from,to,cap,flow,next;
    }edge[MAXM];
    void init()
    {
    	ans=0;
    	memset(head,-1,sizeof(head));
    	for(int i=1;i<=m;i++)
    	    map[i].clear();
    }
    void add(int u,int v,int w)
    {
    	int i,j;
    	for(i=head[u];i!=-1;i=edge[i].next)
    	{
    		if(edge[i].to==v) //判断是否有重边 
    		    break;
    	} 
    	if(i==-1)//i==-1表示当前这个点并没有边与其相连 
    	{
    		edge[ans]={u,v,w,0,head[u]};
    		head[u]=ans++;
    		edge[ans]={v,u,0,0,head[v]};
    		head[v]=ans++;
    	}
    	else//如果有重边  则将流量合并 
    	    if(w!=INF)
    	        edge[i].cap+=w;
    }
    void input()
    {
    	int i,j,key;
    	for(i=1;i<=m;i++)
    		scanf("%d",&pig[i]);
        for(i=1;i<=n;i++)
        {
        	scanf("%d",&a);
        	while(a--)
        	{
        		scanf("%d",&key);
        		map[key].push_back(i);//存储先后到第可以个猪圈的顾客编号 
        	}
        	scanf("%d",&b[i]);
        }
    }
    void getmap()
    {
        int i,j;
        for(i=1;i<=m;i++)
    	{
    		int u=map[i][0];
        	add(0,u,pig[i]);//超级源点连接第一个到i猪圈的顾客 
        	for(j=0;j<map[i].size()-1;j++)
        		add(map[i][j],map[i][j+1],INF);//所有到i猪圈的顾客按照顺序连接 
        }
        for(i=1;i<=n;i++)
            add(i,n+1,b[i]);//所有顾客连接汇点 
    }
    int bfs(int beg,int end)
    {
        int i;
        memset(vis,0,sizeof(vis));
        memset(dis,-1,sizeof(dis));
        queue<int>q;
        while(!q.empty())
            q.pop();
        vis[beg]=1;
        dis[beg]=0;
        q.push(beg);
        while(!q.empty())
        {
            int u=q.front();
            q.pop();
            for(i=head[u];i!=-1;i=edge[i].next)//遍历所有的与u相连的边
            {
                node E=edge[i];
                if(!vis[E.to]&&E.cap>E.flow)//如果边未被访问且流量未满继续操作
                {
                    dis[E.to]=dis[u]+1;//建立层次图
                    vis[E.to]=1;//将当前点标记                                                                                                          
                    if(E.to==end)//如果当前点搜索到终点则停止搜索  返回1表示有从原点到达汇点的路径
                        return 1;
                    q.push(E.to);//将当前点入队
                }
            }
        }
        return 0;//返回0表示未找到从源点到汇点的路径
    }
    int dfs(int x,int a,int end)//把找到的这条边上的所有当前流量加上a(a是这条路径中的最小残余流量)
    {
        //int i;
        if(x==end||a==0)//如果搜索到终点或者最小的残余流量为0
            return a;
        int flow=0,f;
        for(int& i=cur[x];i!=-1;i=edge[i].next)//i从上次结束时的弧开始
        {
            node& E=edge[i];
            if(dis[E.to]==dis[x]+1&&(f=dfs(E.to,min(a,E.cap-E.flow),end))>0)//如果
            {//bfs中我们已经建立过层次图,现在如果 dis[E.to]==dis[x]+1表示是我们找到的路径
            //如果dfs>0表明最小的残余流量还有,我们要一直找到最小残余流量为0
                E.flow+=f;//正向边当前流量加上最小的残余流量
                edge[i^1].flow-=f;//反向边
                flow+=f;//总流量加上f
                a-=f;//最小可增流量减去f
                if(a==0)
                    break;
            }
        }
        return flow;//所有边加上最小残余流量后的值
    }
    int Maxflow(int beg,int end)
    {
        int flow=0;
        while(bfs(beg,end))//存在最短路径
        {
            memcpy(cur,head,sizeof(head));//复制数组
            flow+=dfs(beg,INF,end);
        }
        return flow;//最大流量
    }
    int main()
    {
    	while(scanf("%d%d",&m,&n)!=EOF)
    	{
    		init();
    		input();
    		getmap();
    		printf("%d
    ",Maxflow(0,n+1));
    	}
    	return 0;
    } 
    

      

  • 相关阅读:
    E百科 | 第2期 扒一扒能加速互联网的QUIC协议
    阿里的 RocketMQ 如何让双十一峰值之下 0 故障?
    阿里巴巴开源容器镜像加速技术
    Fluid — 云原生环境下的高效“数据物流系统”
    一站式云原生智能告警运维平台——SLS新版告警发布!
    重磅官宣:Nacos2.0 发布,性能提升 10 倍
    阿里云高级技术专家周哲:阿里云边缘云原生应用实践
    互联网泛娱乐直播安全的解决之道
    货运物流移动端解决方案:为货运物流行业打造高性能、高粘性的“双端”触点
    SpringMVC(十四) RequestMapping ModelAndView
  • 原文地址:https://www.cnblogs.com/tonghao/p/4939984.html
Copyright © 2020-2023  润新知