• mycat初探


    1:安装客户端

    yum install mysql 

    2:安装服务端

    yum install mysql-server 

    3:mycat要求不区分大小写

    my.cnf(/etc/my.cnf)的[mysqld]区段下增加: lower_case_table_names=1

    4:启动mysql

    service mysqld start 

    5:创建用户

    mysqladmin -u root password 110110 

    6:登陆mysql

    mysql -u root; 

    7:赋予远程登陆权限

    GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '110110' WITH GRANT OPTION;
    flush privileges; 

    8:上传mycat到服务器(java要求1.7以上)

    9:启动mycat

    chmod 777 ./* 在bin目录下

    ./startup_nowrap.sh

    10:修改配置文件

    	<dataHost name="localhost1" maxCon="1000" minCon="10" balance="0"
    		writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
    		<heartbeat>select user()</heartbeat>
    		<!-- can have multi write hosts -->
    		<writeHost host="hostM1" url="10.97.190.27:3306" user="qidian"
    			password="qidian">
    			<!-- can have multi read hosts -->
    
    		</writeHost>
    		<!-- 
    		<writeHost host="hostS1" url="localhost:3316" user="root"
    			password="123456" />
    		<writeHost host="hostM2" url="localhost:3316" user="root" password="123456"/> -->
    	</dataHost>
    

    链接自己的mysql服务器

    11:登陆mysql建立数据库。数据库名字db1,db2,db3

    12:登陆mycat管理

     mysql -utest -ptest -h127.0.0.1 -P9066
    

    show @@help

    其中reload配置文件需要reload @@config_all,类似于nginx的reload

    conf/server.xml 存储mycat的账户,和mysql账户没有关系

    conf/schema.xml 逻辑表 

    13:登陆mycat

    mysql -utest -ptest -h127.0.0.1 -P8066 -DTESTDB

    14:分片

    1:全局表

    <table name="company" primaryKey="ID" type="global" dataNode="dn1,dn2,dn3" />

    每行记录在每个分片上同时存在

    2:枚举

    schema.xml

    <table name="employee" primaryKey="ID" dataNode="dn1,dn2" rule="sharding-by-intfile" />

    rule.xml

    <tableRule name="sharding-by-intfile">
    <rule>
    <columns>sharding_id</columns>
    <algorithm>hash-int</algorithm>
    </rule>
    </tableRule>

    <function name="hash-int"
    class="org.opencloudb.route.function.PartitionByFileMap">
    <property name="mapFile">partition-hash-int.txt</property>
    </function>

    partition-hash-int.txt

    10000=0
    10010=1

    DEFAULT_NODE=1

    如果你输入

    insert into employee(id,name,sharding_id) values(4, 'mydog',10011);则出错因为分片策略没有枚举10011的分片位置

    上面columns 标识将要分片的表字段,algorithm 分片函数,
    其中分片函数配置中,mapFile标识配置文件名称,type默认值为0,0表示Integer,非零表示String,
    所有的节点配置都是从0开始,及0代表节点1
    /**
    *  defaultNode 默认节点:小于0表示不设置默认节点,大于等于0表示设置默认节点
    * 
    默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点
    *                如果不配置默认节点(defaultNode值小于0表示不配置默认节点),碰到
    *                不识别的枚举值就会报错,
    *                like this:can't find datanode for sharding column:column_name val:ffffffff    
    */
    

    3:父子表

    		<table name="customer" primaryKey="ID" dataNode="dn1,dn2"
    			rule="sharding-by-intfile">
    			<childTable name="orders" primaryKey="ID" joinKey="customer_id"
    				parentKey="id">
    				<childTable name="order_items" joinKey="order_id"
    					parentKey="id" />
    			</childTable>
    			<childTable name="customer_addr" primaryKey="ID" joinKey="customer_id"
    				parentKey="id" />
    		</table>
    
    explain create table customer(id int not null primary key,name varchar(100),company_id int not null,sharding_id int not null);
    explain insert into customer (id,name,company_id,sharding_id )values(1,'wang',1,10000);  
    explain insert into customer (id,name,company_id,sharding_id )values(2,'xue',2,10010);  
    explain insert into customer (id,name,company_id,sharding_id )values(3,'feng',3,10000); 
    explain Select * from  customer; 
    
    
    create table orders (id int not null primary key ,customer_id int not null,sataus int ,note varchar(100) );
            insert into orders(id,customer_id) values(1,1); //stored in db1 because customer table with id=1 stored in db1   
            insert into orders(id,customer_id) values(2,2); //stored in db2 because customer table with id=1 stored in db2    
            explain insert into orders(id,customer_id) values(2,2); 
            select customer.name ,orders.* from customer ,orders where customer.id=orders.customer_id; 
    

    4:范围约定

    <table name="travelrecord" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />
    
    	<tableRule name="auto-sharding-long">
    		<rule>
    			<columns>id</columns>
    			<algorithm>rang-long</algorithm>
    		</rule>
    	</tableRule>
    
    	<function name="rang-long"
    		class="org.opencloudb.route.function.AutoPartitionByLong">
    		<property name="mapFile">autopartition-long.txt</property>
    	</function>
    
    # range start-end ,data node index
    # K=1000,M=10000.
    0-500M=0
    500M-1000M=1
    1000M-1500M=2
    

    5:固定分片hash算法

    <tableRule name="rule1">
        <rule>
          <columns>user_id</columns>
          <algorithm>func1</algorithm>
        </rule>
    </tableRule>
    
      <function name="func1" class="org.opencloudb.route.function.PartitionByLong">
        <property name="partitionCount">2,1</property>
        <property name="partitionLength">256,512</property>
      </function>
    
    配置说明:
    上面columns 标识将要分片的表字段,algorithm 分片函数,
    partitionCount 分片个数列表,partitionLength 分片范围列表
    分区长度:默认为最大2^n=1024 ,即最大支持1024分区
    约束 :
    count,length两个数组的长度必须是一致的。
    1024 = sum((count[i]*length[i])). count和length两个向量的点积恒等于1024
    用法例子:
            本例的分区策略:希望将数据水平分成3份,前两份各占25%,第三份占50%。(故本例非均匀分区)
            // |<---------------------1024------------------------>|
            // |<----256--->|<----256--->|<----------512---------->|
            // | partition0 | partition1 | partition2 |
            // | 共2份,故count[0]=2 | 共1份,故count[1]=1 |
            int[] count = new int[] { 2, 1 };
            int[] length = new int[] { 256, 512 };
            PartitionUtil pu = new PartitionUtil(count, length);
    
            // 下面代码演示分别以offerId字段或memberId字段根据上述分区策略拆分的分配结果
            int DEFAULT_STR_HEAD_LEN = 8; // cobar默认会配置为此值
            long offerId = 12345;
            String memberId = "qiushuo";
    
            // 若根据offerId分配,partNo1将等于0,即按照上述分区策略,offerId为12345时将会被分配到partition0中
            int partNo1 = pu.partition(offerId);
    
            // 若根据memberId分配,partNo2将等于2,即按照上述分区策略,memberId为qiushuo时将会被分到partition2中
            int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN);
    
    如果需要平均分配设置:平均分为4分片,partitionCount*partitionLength=1024
    <function name="func1" class="org.opencloudb.route.function.PartitionByLong">
        <property name="partitionCount">4</property>
        <property name="partitionLength">256</property>
      </function>
    

    6:求模法

    <tableRule name="mod-long">
        <rule>
          <columns>user_id</columns>
          <algorithm>mod-long</algorithm>
        </rule>
      </tableRule>
      <function name="mod-long" class="org.opencloudb.route.function.PartitionByMod">
       <!-- how many data nodes  -->
        <property name="count">3</property>
      </function> 
    配置说明:
    上面columns 标识将要分片的表字段,algorithm 分片函数,
    此种配置非常明确即根据id进行十进制求模预算,相比方式1,此种在批量插入时需要切换数据源,id不连续
    

    7:日期列分区

    <tableRule name="sharding-by-date">
          <rule>
            <columns>create_time</columns>
            <algorithm>sharding-by-date</algorithm>
          </rule>
       </tableRule>  
    <function name="sharding-by-date" class="org.opencloudb.route.function.PartitionByDate">
        <property name="dateFormat">yyyy-MM-dd</property>
        <property name="sBeginDate">2014-01-01</property>
        <property name="sPartionDay">10</property>
      </function>
    配置说明:
    上面columns 标识将要分片的表字段,algorithm 分片函数,
    配置中配置了开始日期,分区天数,即默认从开始日期算起,分隔10天一个分区
    
    
    Assert.assertEquals(true, 0 == partition.calculate("2014-01-01"));
    Assert.assertEquals(true, 0 == partition.calculate("2014-01-10"));
    Assert.assertEquals(true, 1 == partition.calculate("2014-01-11"));
    Assert.assertEquals(true, 12 == partition.calculate("2014-05-01"));
    

    8:通配取模

    <tableRule name="sharding-by-pattern">
          <rule>
            <columns>user_id</columns>
            <algorithm>sharding-by-pattern</algorithm>
          </rule>
       </tableRule>
    <function name="sharding-by-pattern" class="org.opencloudb.route.function.PartitionByPattern">
        <property name="patternValue">256</property>
        <property name="defaultNode">2</property>
        <property name="mapFile">partition-pattern.txt</property>
    
      </function>
    partition-pattern.txt 
    # id partition range start-end ,data node index
    ###### first host configuration
    1-32=0
    33-64=1
    65-96=2
    97-128=3
    ######## second host configuration
    129-160=4
    161-192=5
    193-224=6
    225-256=7
    0-0=7
    
    配置说明:
    上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode 默认节点,如果配置了默认,则不会按照求模运算
    mapFile 配置文件路径
    配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推,如果id非数据,则会分配在defaoultNode 默认节点
    
    String idVal = "0";
    Assert.assertEquals(true, 7 == autoPartition.calculate(idVal));
    idVal = "45a";
    Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));
    

    9:ASCII码求模通配

    <tableRule name="sharding-by-prefixpattern">
          <rule>
            <columns>user_id</columns>
            <algorithm>sharding-by-prefixpattern</algorithm>
          </rule>
       </tableRule>
    <function name="sharding-by-pattern" class="org.opencloudb.route.function.PartitionByPattern">
        <property name="patternValue">256</property>
        <property name="prefixLength">5</property>
        <property name="mapFile">partition-pattern.txt</property>
    
      </function>
    
    partition-pattern.txt
    
    # range start-end ,data node index
    # ASCII
    # 48-57=0-9
    # 64、65-90=@、A-Z
    # 97-122=a-z
    ###### first host configuration
    1-4=0
    5-8=1
    9-12=2
    13-16=3
    ###### second host configuration
    17-20=4
    21-24=5
    25-28=6
    29-32=7
    0-0=7
    配置说明:
    上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength ASCII 截取的位数
    mapFile 配置文件路径
    配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推 
    
    此种方式类似方式6只不过采取的是将列种获取前prefixLength位列所有ASCII码的和进行求模sum%patternValue ,获取的值,在通配范围内的
    即 分片数,
    /**
    * ASCII编码:
    * 48-57=0-9阿拉伯数字
    * 64、65-90=@、A-Z
    * 97-122=a-z
    *
    */
    如 
    
    String idVal="gf89f9a";
    Assert.assertEquals(true, 0==autoPartition.calculate(idVal));
    
    idVal="8df99a";
    Assert.assertEquals(true, 4==autoPartition.calculate(idVal));
    
    idVal="8dhdf99a";
    Assert.assertEquals(true, 3==autoPartition.calculate(idVal));
    

    10:编程指定

    <tableRule name="sharding-by-substring">
          <rule>
            <columns>user_id</columns>
            <algorithm>sharding-by-substring</algorithm>
          </rule>
       </tableRule>
    <function name="sharding-by-substring" class="org.opencloudb.route.function.PartitionDirectBySubString">
        <property name="startIndex">0</property> <!-- zero-based -->
        <property name="size">2</property>
        <property name="partitionCount">8</property>
        <property name="defaultPartition">0</property>
      </function>
    配置说明:
    上面columns 标识将要分片的表字段,algorithm 分片函数 
    此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。
    例如id=05-100000002
    在此配置中代表根据id中从startIndex=0,开始,截取siz=2位数字即05,05就是获取的分区,如果没传默认分配到defaultPartition
    

    11:字符串拆分hash解析

    <tableRule name="sharding-by-stringhash">
          <rule>
            <columns>user_id</columns>
            <algorithm>sharding-by-stringhash</algorithm>
          </rule>
       </tableRule>
    <function name="sharding-by-substring" class="org.opencloudb.route.function.PartitionDirectBySubString">
        <property name=length>512</property> <!-- zero-based -->
        <property name="count">2</property>
        <property name="hashSlice">0:2</property>
      </function>
    配置说明:
    上面columns 标识将要分片的表字段,algorithm 分片函数 
    函数中length代表字符串hash求模基数,count分区数,hashSlice hash预算位
    
    即根据子字符串 hash运算
    
    	
    
    hashSlice : 0 means str.length(), -1 means str.length()-1
    
    /**
         * "2" -> (0,2)<br/>
         * "1:2" -> (1,2)<br/>
         * "1:" -> (1,0)<br/>
         * "-1:" -> (-1,0)<br/>
         * ":-1" -> (0,-1)<br/>
         * ":" -> (0,0)<br/>
         */
    例子:
    String idVal=null;
     rule.setPartitionLength("512");
     rule.setPartitionCount("2");
     rule.init();
     rule.setHashSlice("0:2");
    //		idVal = "0";
    //		Assert.assertEquals(true, 0 == rule.calculate(idVal));
    //		idVal = "45a";
    //		Assert.assertEquals(true, 1 == rule.calculate(idVal));
    
     
     
     //last 4
     rule = new PartitionByString();
     rule.setPartitionLength("512");
     rule.setPartitionCount("2");
     rule.init();
     //last 4 characters
     rule.setHashSlice("-4:0");
     idVal = "aaaabbb0000";
     Assert.assertEquals(true, 0 == rule.calculate(idVal));
     idVal = "aaaabbb2359";
     Assert.assertEquals(true, 0 == rule.calculate(idVal));
    

    12:一致性hash

    <tableRule name="sharding-by-murmur">
          <rule>
            <columns>user_id</columns>
            <algorithm>murmur</algorithm>
          </rule>
       </tableRule>
    <function name="murmur" class="org.opencloudb.route.function.PartitionByMurmurHash">
          <property name="seed">0</property><!-- 默认是0-->
          <property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片-->
          <property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍-->
          <!--
          <property name="weightMapFile">weightMapFile</property>
                         节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 -->
          <!--
          <property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
                          用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
      </function>
    一致性hash预算有效解决了分布式数据的扩容问题,前1-9中id规则都多少存在数据扩容难题,而10规则解决了数据扩容难点
    
  • 相关阅读:
    Vitamio中文API文档(3)—— MediaController
    [活动]hhhchina.net很暴力,还有更好的投票方式吗?
    [anytao.activity]也来拉票,不只为评选
    [活动]Scott,来了
    写在2007,行胜于言
    《你必须知道的.NET》,评价和推荐
    [你必须知道的.NET]第十七回:貌合神离:覆写和重载
    [你必须知道的.NET]第十八回:对象创建始末(上)
    当选2008 Microsoft MVP,从好的开始继续
    [你必须知道的.NET]第十九回:对象创建始末(下)
  • 原文地址:https://www.cnblogs.com/tommyli/p/5106736.html
Copyright © 2020-2023  润新知