• zoj 3673 1729


    1729

    Time Limit: 3 Seconds      Memory Limit: 65536 KB

    1729 is the natural number following 1728 and preceding 1730. It is also known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words:

    I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two (positive) cubes in two different ways."

    The two different ways are these: 1729 = 13 + 123 = 93 + 103

    Now your task is to count how many ways a positive number can be expressible as the sum of two positive cubes in. All the numbers in this task can be expressible as the sum of two positive cubes in at least one way.

    Input

    There're nearly 20,000 cases. Each case is a positive integer in a single line. And all these numbers are greater than 1 and less than 264.

    Output

    Please refer to the sample output. For each case, you should output a line. First the number of ways n. Then followed by n pairs of integer, (ai,bi), indicating a way the given number can be expressible as the sum of ai's cube and bi's. (aibi, and a1< a2< ...< an)

    Sample Input

    9
    4104
    2622104000
    21131226514944
    48988659276962496
    

    Sample Output

    1 (1,2)
    2 (2,16) (9,15)
    3 (600,1340) (678,1322) (1020,1160)
    4 (1539,27645) (8664,27360) (11772,26916) (17176,25232)
    5 (38787,365757) (107839,362753) (205292,342952) (221424,336588) (231518,331954)
    

    Hint

    Although most numbers cannot be expressible as the sum of two positive cubes, the vast majority of numbers in this task can be expressible as the sum of two positive cubes in two or more ways. 

     题意:给一个数字N,问有多少中方法组成 a^3+b^3 = N,把每一种情况输出来。

     思路:a^3+b^3 = (a^2+b^2-ab)*(a+b) 那么我们就知道(a+b)是N的一个因子。

             由此枚举每一个因子。

      1 #include<iostream>
      2 #include<stdio.h>
      3 #include<cstring>
      4 #include<math.h>
      5 #include<cstdlib>
      6 #include<algorithm>
      7 using namespace std;
      8 typedef unsigned long long LL;
      9 const int maxn = 2642246+2;
     10 
     11 struct node
     12 {
     13     LL x,y;
     14 } tom[10002];
     15 int tlen;
     16 LL prime[192728];
     17 int len;
     18 bool s[maxn];
     19 void init()
     20 {
     21     memset(s,false,sizeof(s));
     22     len = 0;
     23     for(int i=2; i<maxn; i++)
     24         if(s[i]==false)
     25         {
     26             prime[++len]=i;
     27             for(int j=i+i; j<maxn; j=j+i)
     28                 s[j]=true;
     29         }
     30 }
     31 LL fac[5001],num[5001];
     32 int flen;
     33 void Euler(LL n)
     34 {
     35     int i,count;
     36     flen = 0;
     37     for(i=1; prime[i]*prime[i]<=n; i++)
     38     {
     39         if(n%prime[i]==0)
     40         {
     41             count = 0;
     42             while(n%prime[i]==0)
     43             {
     44                 n=n/prime[i];
     45                 count++;
     46             }
     47             fac[++flen]=prime[i];
     48             num[flen]=count;
     49         }
     50     }
     51     if(n!=1)
     52     {
     53         fac[++flen]=n;
     54         num[flen]=1;
     55     }
     56 }
     57 
     58 LL Q[50050];
     59 int qlen;
     60 void solve()
     61 {
     62     Q[0]=1;
     63     qlen = 0;
     64     for(int i=1; i<=flen; i++)
     65     {
     66         int k;
     67         int s=0;
     68         for(int j=1; j<=num[i]; j++)
     69         {
     70             k = qlen;
     71             for(; s<=k; s++)
     72                 Q[++qlen]=Q[s]*fac[i];
     73         }
     74     }
     75 }
     76 int main()
     77 {
     78     LL n;
     79     int T=0;
     80     init();
     81     while(scanf("%llu",&n)>0)
     82     {
     83         Euler(n);
     84         solve();
     85         sort(Q+1,Q+1+qlen);
     86         tlen=0;
     87         int NUM=0;
     88         for(int i=1; i<=qlen; i++)
     89         {
     90             LL y = (Q[i]*Q[i]-n/Q[i])/3;
     91             LL x = Q[i];
     92             if(x*x>=4*y)
     93             {
     94                 LL ss = (LL)sqrt((x*x-4*y)*1.0);
     95                 LL ans1 = (x-ss)/2;
     96                 LL ans2 = (x+ss)/2;
     97                 if(ans1==0||ans2==0)continue;
     98                 if(ans1*ans1*ans1+ans2*ans2*ans2==n)
     99                 {
    100                     tom[++tlen].x=ans1;
    101                     tom[tlen].y=ans2;
    102                     NUM++;
    103                 }
    104             }
    105         }
    106         printf("%d",NUM);
    107         for(int i=1; i<=tlen; i++)
    108             printf(" (%llu,%llu)",tom[i].x,tom[i].y);
    109         printf("
    ");
    110     }
    111     return 0;
    112 }
  • 相关阅读:
    influxdb服务器 relay
    browse-agent type and curl post
    使用 Ansible 管理 MySQL 复制
    ansible里的item和with_items
    Ansible 从MySQL数据库添加或删除用户
    ansibel---tag模块
    ll | wc -l的陷阱
    ansible 判断和循环
    Ansible详解(二)
    Ansible详解(一)
  • 原文地址:https://www.cnblogs.com/tom987690183/p/4040248.html
Copyright © 2020-2023  润新知