• poj 1430 Binary Stirling Numbers


    Binary Stirling Numbers
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 1761   Accepted: 671

    Description

    The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts: 

    {1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}
    
    {1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.


    There is a recurrence which allows to compute S(n, m) for all m and n. 

    S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;
    S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.


    Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2. 


    Example 

    S(4, 2) mod 2 = 1.


    Task 

    Write a program which for each data set: 
    reads two positive integers n and m, 
    computes S(n, m) mod 2, 
    writes the result. 

    Input

    The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 200. The data sets follow. 

    Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9. 

    Output

    The output should consist of exactly d lines, one line for each data set. Line i, 1 <= i <= d, should contain 0 or 1, the value of S(ni, mi) mod 2.

    Sample Input

    1
    4 2

    Sample Output

    1

    Source

     

    可以转化成求C(N,M)来做。当然不是直接转化。

    打出表看一下,发现是有规律的。

    每一列都会重复一次。打表看一下吧。

    思路:  

         s(n,m)   如果m是偶数  n=n-1; m=m-1;==>转化到它的上一个s(n-1,m-1);

              k=(m+1)/2;  n=n-k; m=m-k;求C(n,m)的奇偶性就可以了。(当然有很多书写方式,不一定要这样做。)

    测试用的

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 
     7 int dp[21][21];
     8 int cnm[21][21];
     9 void init()
    10 {
    11     int i,j;
    12     dp[0][0]=1;
    13     for(i=1;i<=20;i++) dp[i][0]=0;
    14     for(i=1;i<=20;i++)
    15         for(j=1;j<=i;j++)
    16             dp[i][j]=dp[i-1][j-1]+dp[i-1][j]*j;
    17     for(i=0;i<=15;i++)
    18     {
    19         for(j=0;j<=i;j++)
    20             printf("%d ",(dp[i][j]&1));
    21         printf("
    ");
    22     }
    23 
    24     cnm[0][0]=1;
    25     for(i=1;i<=20;i++)
    26     {
    27         cnm[i][0]=1;
    28         cnm[0][i]=1;
    29     }
    30     for(i=1;i<=20;i++)
    31     {
    32         for(j=1;j<=i;j++)
    33         {
    34             if(j==1) cnm[i][j]=i;
    35             else if(i==j) cnm[i][j]=1;
    36             else cnm[i][j]=cnm[i-1][j]+cnm[i-1][j-1];
    37         }
    38     }
    39     for(i=0;i<=15;i++)
    40     {
    41         for(j=0;j<=i;j++)
    42             printf("%d ",cnm[i][j]&1);
    43         printf("
    ");
    44     }
    45 }
    46 int main()
    47 {
    48     init();
    49     int n,m;
    50     while(scanf("%d%d",&n,&m)>0)
    51     {
    52         printf("%d
    ",dp[n][m]);
    53     }
    54     return 0;
    55 }
    View Code

    ac代码

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 
     7 int a[64],alen;
     8 int b[64],blen;
     9 void solve(int n,int m)
    10 {
    11     int i;
    12     bool flag=false;
    13     alen=0;
    14     blen=0;
    15     memset(a,0,sizeof(a));
    16     memset(b,0,sizeof(b));
    17     while(n)
    18     {
    19         a[++alen]=(n&1);
    20         n=n>>1;
    21     }
    22     while(m)
    23     {
    24         b[++blen]=(m&1);
    25         m=m>>1;
    26     }
    27     for(i=1; i<=alen; i++)
    28     {
    29         if(a[i]==0 && b[i]==1) flag=true;
    30         if(flag==true) break;
    31     }
    32     if(flag==true)printf("0
    ");
    33     else printf("1
    ");
    34 }
    35 int main()
    36 {
    37     int T;
    38     int n,m,k;
    39     scanf("%d",&T);
    40     while(T--)
    41     {
    42         scanf("%d%d",&n,&m);
    43         if(m%2==0)
    44         {
    45             n=n-1;
    46             m=m-1;
    47         }
    48         k=(m+1)/2;
    49         solve(n-k,m-k);
    50     }
    51     return 0;
    52 }
    View Code
  • 相关阅读:
    Chrome浏览器网页截全屏算法以及实现
    去除scons构建动态库的前缀lib
    Javascript的继承
    win7 VS2008 ffmpeg release 版本崩溃 0x00905a4d 处未处理的异常
    shell脚本获取随机数random
    iOS navigationbar添加实现
    TableView中改变Button按钮状态
    将TableView的中的Label和Cell行数绑定
    build diff: /../Podfile.lock: No such file or directory
    initramfs-tools ... update-initramfs: Generating /boot/initrd.img-3.14-kali1-amd64 mktemp: failed to create directory via template `/var/tmp/mki
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3706344.html
Copyright © 2020-2023  润新知