• hdu 1054 Strategic Game 经典树形DP


    Strategic Game

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4061    Accepted Submission(s): 1791

    Problem Description
    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?
    Your program should find the minimum number of soldiers that Bob has to put for a given tree.
    The input file contains several data sets in text format. Each data set represents a tree with the following description:
    the number of nodes the description of each node in the following format node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier or node_identifier:(0)
    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.
    For example for the tree: 
     

    the solution is one soldier ( at the node 1).
    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:
     
    Sample Input
     4
    0:(1) 1
    1:(2) 2 3
    2:(0)
    3:(0)
    5
    3:(3) 1 4 2
    1:(1) 0
    2:(0)
    0:(0)
    4:(0)
     
    Sample Output
    1
    2
     
    Source
     
    这一道题和 hdu2412是一个类型的。而且还容易了一些。
     
     
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<stdlib.h>
     4 
     5 struct node
     6 {
     7     int next[1502];
     8     int num;
     9 }f[1502];
    10 int dp[1502][2];
    11 
    12 int Min(int x,int y)
    13 {
    14     return x>y? y:x;
    15 }
    16 
    17 void dfs(int k)
    18 {
    19     int i,j,cur;
    20     if( f[k].num==0 )
    21     {
    22         dp[k][0]=0;
    23         dp[k][1]=1;
    24         return;
    25     }
    26     for(i=1;i<=f[k].num;i++)
    27     {
    28         cur=f[k].next[i];
    29         dfs(cur);
    30         j=Min(dp[cur][0],dp[cur][1]);
    31         dp[k][1]+=j;
    32 
    33         dp[k][0]+=dp[cur][1];
    34     }
    35     dp[k][1]++;
    36 }
    37 
    38 int main()
    39 {
    40     int n,root,r,num,x,len;
    41     int i,j;
    42     while(scanf("%d",&n)>0)
    43     {
    44         getchar();
    45         for(i=1;i<=1500;i++)  f[i].num=0;
    46         for(i=1;i<=n;i++)
    47         {
    48             scanf("%d:(%d)",&r,&num);
    49             if(i==1) root=r;
    50             f[r].num=num;
    51             len=0;
    52             for(j=1;j<=num;j++)
    53             {
    54                 scanf("%d",&x);
    55                 f[r].next[++len]=x;
    56             }
    57         }
    58         memset(dp,0,sizeof(dp));
    59         dfs(root);
    60         printf("%d
    ",Min(dp[root][0],dp[root][1]));
    61     }
    62     return 0;
    63 }
  • 相关阅读:
    mvn 配置修改
    进制换算
    AT指令(中文详解版)二 [转载]
    Linux内核数据包处理流程-数据包接收(3)[转载]
    Linux内核数据包处理流程-数据包接收(2)[转载]
    Linux内核数据包处理流程-数据包接收(1)[转载]
    linux 内核模块 dumpstack
    linux c 用户态调试追踪函数调用堆栈以及定位段错误[转载]
    预处理命令详解(转载)
    [记录]博客开通
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3393413.html
Copyright © 2020-2023  润新知