Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 2479 | Accepted: 1385 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
Source
1 /* 2 定理1:如果p有原根,则它恰有φ(φ(p))个不同的原根(无论p是否为素数都适用) 3 p为素数,当然φ(p)=p-1,因此就有φ(p-1)个原根 4 5 6 数学差的人,很伤不起... 7 */ 8 9 #include<stdio.h> 10 11 12 int Euler(int n) 13 { 14 int i,temp=n; 15 for(i=2;i*i<=n;i++) 16 { 17 if(n%i==0) 18 { 19 while(n%i==0) 20 n=n/i; 21 temp=temp/i*(i-1); 22 } 23 } 24 if(n!=1) 25 temp=temp/n*(n-1); 26 return temp; 27 } 28 29 int main() 30 { 31 int n; 32 while(scanf("%d",&n)>0) 33 { 34 printf("%d ",Euler(n-1)); 35 } 36 return 0; 37 }