• HDU 1394 Minimum Inversion Number


    Minimum Inversion Number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6471    Accepted Submission(s): 3940


    Problem Description
    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

    For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

    a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
    a2, a3, ..., an, a1 (where m = 1)
    a3, a4, ..., an, a1, a2 (where m = 2)
    ...
    an, a1, a2, ..., an-1 (where m = n-1)

    You are asked to write a program to find the minimum inversion number out of the above sequences.
     
    Input
    The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
     
    Output
    For each case, output the minimum inversion number on a single line.
     
    Sample Input
    10 1 3 6 9 0 8 5 7 4 2
     
    Sample Output
    16

    求最小逆序数,n个数,有n种形式

    线段树和树状数组都能做。

    线段树代码

    #include<stdio.h>
    struct st
    {
        int l;
        int r;
        int sum;
    }f[4*5002];
    int date[5002];
    void build(int l,int r,int n)
    {
        int mid=(l+r)/2;
        f[n].l=l;
        f[n].r=r;
        if(l==r)
            f[n].sum=date[l];
        else
        {
            build(l,mid,n*2);
            build(mid+1,r,n*2+1);
            f[n].sum=f[n*2].sum+f[n*2+1].sum;
        }
    }
    void update(int wz,int num,int n)
    {
        int mid=(f[n].l+f[n].r)/2,t;
        if(f[n].l==wz&&f[n].r==wz)
        {
            f[n].sum=f[n].sum+num;
            t=n/2;
            while(t)
            {
                f[t].sum=f[t*2].sum+f[t*2+1].sum;
                t=t/2;
            }
        }
        else if(mid>=wz)
            update(wz,num,n*2);
        else update(wz,num,n*2+1);
    }
    int getsum(int l,int r,int n)
    {
        int mid=(f[n].l+f[n].r)/2;
        if(f[n].l==l&&f[n].r==r)
            return f[n].sum;
        else if(mid>=r)
            getsum(l,r,n*2);
        else if(mid<l)
            getsum(l,r,n*2+1);
        else 
        {
            return getsum(l,mid,n*2)+getsum(mid+1,r,n*2+1);
        }
    }
    int main()
    {
        int i,k,n,sum,s;
        while(scanf("%d",&n)>0)
        {
            for(i=1;i<=n;i++)
                date[i]=0;
            build(1,n,1);
            sum=0;
            for(i=1;i<=n;i++)
            {
                scanf("%d",&date[i]);
                date[i]++;
            }
            for(i=1;i<=n;i++)
            {
                update(date[i],1,1);
                k=getsum(1,date[i],1);
                sum=sum+i-k;
            }
            s=sum;
            for(i=1;i<=n;i++)
            {
            //    printf("%d ",s);
                k=n-date[i]-(date[i]-1);
                s=s+k;
                if(s<sum)
                    sum=s;    
            }
            printf("%d\n",sum);
        }
        return 0;
    }

    树状数组代码:

    #include<stdio.h>
    int a[5003],d[5003];
    int lowbit(int x)
    {
        return x&(-x);
    }
    int sum(int x,int *p)
    {
        int k=0;
        while(x)
        {
            k=k+p[x];
            x=x-lowbit(x);
        }
        return k;
    }
    void add(int x,int n,int num,int *p)
    {
        int i;
        for(i=x;i<=n;i=i+lowbit(i))
            p[i]=p[i]+num;
    }
    int main()
    {
        int i,j,k,n,m,cz,k1,k2,min;
        while(scanf("%d",&n)>0)
        {
            for(i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
                a[i]++;
                d[i]=0;
            }
            for(i=1,cz=0;i<=n;i++)
            {
                add(a[i],n,1,d);
                k1=i-sum(a[i],d);
                cz=k1+cz;
            }
        //    printf("%d\n",cz);
            for(i=1,k1=0,min=cz;i<n;i++)
            {
                k1=n-a[i];
                k2=-a[i]+1;
                min=k1+k2+min;
            //    printf("%d ",k1+k2);
                if(min<cz)
                    cz=min;
            }
            printf("%d\n",cz);
        }
        return 0;
    }
    
    
    
                
  • 相关阅读:
    vue路由的简单实例
    webpack配置sass模块的加载
    jQuery停止动画——stop()方法的使用
    jQuery检查某个元素在页面上是否存在
    js获取鼠标当前的位置
    js实现一些跨浏览器的事件方法
    逐个访问URL的每个查询字符串参数
    《锋利的jQuery》(第2版)读书笔记4
    jQuery与Ajax的应用——《锋利的jQuery》(第2版)读书笔记3
    jQuery中的事件和动画——《锋利的jQuery》(第2版)读书笔记2
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3051137.html
Copyright © 2020-2023  润新知