• python json模块 超级详解


    JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式。JSON的数据格式其实就是python里面的字典格式,里面可以包含方括号括起来的数组,也就是python里面的列表。

    在python中,有专门处理json格式的模块—— json 和 picle模块

      Json   模块提供了四个方法: dumps、dump、loads、load

    pickle 模块也提供了四个功能:dumps、dump、loads、load
     
    一. dumps 和 dump:
     dumps和dump   序列化方法
           dumps只完成了序列化为str,
           dump必须传文件描述符,将序列化的str保存到文件中
     
    查看源码:
    def dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True,
            allow_nan=True, cls=None, indent=None, separators=None,
            default=None, sort_keys=False, **kw):
        # Serialize ``obj`` to a JSON formatted ``str``.
        # 序列号 “obj” 数据类型 转换为 JSON格式的字符串 
    def dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True,
            allow_nan=True, cls=None, indent=None, separators=None,
            default=None, sort_keys=False, **kw):
        """Serialize ``obj`` as a JSON formatted stream to ``fp`` (a
        ``.write()``-supporting file-like object).
         我理解为两个动作,一个动作是将”obj“转换为JSON格式的字符串,还有一个动作是将字符串写入到文件中,也就是说文件描述符fp是必须要的参数 """

    示例代码:

    >>> import json
    >>> json.dumps([])    # dumps可以格式化所有的基本数据类型为字符串
    '[]'
    >>> json.dumps(1)    # 数字
    '1'
    >>> json.dumps('1')   # 字符串
    '"1"'
    >>> dict = {"name":"Tom", "age":23}  
    >>> json.dumps(dict)     # 字典
    '{"name": "Tom", "age": 23}'
    a = {"name":"Tom", "age":23}
    with open("test.json", "w", encoding='utf-8') as f:
        # indent 超级好用,格式化保存字典,默认为None,小于0为零个空格
        f.write(json.dumps(a, indent=4))
        # json.dump(a,f,indent=4)   # 和上面的效果一样

    保存的文件效果:

    二. loads 和 load 

    loads和load  反序列化方法

           loads 只完成了反序列化,
           load 只接收文件描述符,完成了读取文件和反序列化

     查看源码:

    def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
        """Deserialize ``s`` (a ``str`` instance containing a JSON document) to a Python object.
           将包含str类型的JSON文档反序列化为一个python对象"""
    def load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
        """Deserialize ``fp`` (a ``.read()``-supporting file-like object containing a JSON document) to a Python object.
            将一个包含JSON格式数据的可读文件饭序列化为一个python对象"""

    实例:

    >>> json.loads('{"name":"Tom", "age":23}')
    {'age': 23, 'name': 'Tom'}
    import json
    with open("test.json", "r", encoding='utf-8') as f:
        aa = json.loads(f.read())
        f.seek(0)
        bb = json.load(f)    # 与 json.loads(f.read())
    print(aa)
    print(bb)
    
    # 输出:
    {'name': 'Tom', 'age': 23}
    {'name': 'Tom', 'age': 23}

    三. json 和 picle 模块

     json模块和picle模块都有  dumps、dump、loads、load四种方法,而且用法一样。

    不用的是json模块序列化出来的是通用格式,其它编程语言都认识,就是普通的字符串,

    而picle模块序列化出来的只有python可以认识,其他编程语言不认识的,表现为乱码

    不过picle可以序列化函数,但是其他文件想用该函数,在该文件中需要有该文件的定义(定义和参数必须相同,内容可以不同)

    四. python对象(obj) 与json对象的对应关系

        +-------------------+---------------+
        | Python            | JSON          |
        +===================+===============+
        | dict              | object        |
        +-------------------+---------------+
        | list, tuple       | array         |
        +-------------------+---------------+
        | str               | string        |
        +-------------------+---------------+
        | int, float        | number        |
        +-------------------+---------------+
        | True              | true          |
        +-------------------+---------------+
        | False             | false         |
        +-------------------+---------------+
        | None              | null          |
        +-------------------+---------------+

     五. 总结

     1. json序列化方法:

              dumps:无文件操作            dump:序列化+写入文件

      2. json反序列化方法:

              loads:无文件操作              load: 读文件+反序列化

      3. json模块序列化的数据 更通用

          picle模块序列化的数据 仅python可用,但功能强大,可以序列号函数

      4. json模块可以序列化和反序列化的  数据类型 见  python对象(obj) 与json对象的对应关系表

      5. 格式化写入文件利用  indent = 4 

  • 相关阅读:
    [网络流24题(1/24)] 最小路径覆盖问题(洛谷P2764)
    Codeforces 1082 G(最大权闭合子图)
    bzoj 1497(最大权闭合图/最小割)
    loj 515(bitset优化dp)
    bzoj 3998 (后缀自动机)
    HDU 6071(同余最短路)
    SPOJ COT2 (树上莫队)
    Atcoder Grand Contest 20 C(bitset优化背包)
    hdu 6480-6489 (2018 黑龙江省大学生程序设计竞赛)
    POJ 2594 Treasure Exploration(可重点最小路径覆盖)
  • 原文地址:https://www.cnblogs.com/tjuyuan/p/6795860.html
Copyright © 2020-2023  润新知