• POJ 3265 Building Roads(最小生成树)


    Building Roads
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9255   Accepted: 2669

    Description

    Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already connect some of the farms.

    Each of the N (1 ≤ N ≤ 1,000) farms (conveniently numbered 1..N) is represented by a position (XiYi) on the plane (0 ≤ X≤ 1,000,000; 0 ≤ Y≤ 1,000,000). Given the preexisting M roads (1 ≤ M ≤ 1,000) as pairs of connected farms, help Farmer John determine the smallest length of additional roads he must build to connect all his farms.

    Input

    * Line 1: Two space-separated integers: N and M
    * Lines 2..N+1: Two space-separated integers: Xand Y
    * Lines N+2..N+M+2: Two space-separated integers: i and j, indicating that there is already a road connecting the farm i and farm j.

    Output

    * Line 1: Smallest length of additional roads required to connect all farms, printed without rounding to two decimal places. Be sure to calculate distances as 64-bit floating point numbers.

    Sample Input

    4 1
    1 1
    3 1
    2 3
    4 3
    1 4

    Sample Output

    4.00

    用Prime算法会比较方便
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 #include <string>
     5 #include <cmath>
     6 #include <iomanip>
     7 using namespace std;
     8 #define maxn 1010
     9 double mp[maxn][maxn];
    10 int N, M;
    11 int vis[maxn];
    12 double low[maxn];
    13 struct Point{
    14     double x,y;
    15 }p[maxn];
    16 #define INF 99999999
    17 double cal(double x1, double y1, double x2, double y2){
    18     return ( sqrt( (x1-x2)*(x1-x2) +(y1-y2)*(y1-y2)));
    19 }
    20 double prime(){
    21     double result;int pos;
    22     memset(vis, 0, sizeof(vis));
    23     pos = 1; vis[1] = 1; low[1] = 0;
    24     for(int i = 1; i <= N; i++){
    25         if(i != pos ) low[i] = mp[1][i];  
    26     }
    27     for(int i = 1; i <= N-1; i++){
    28         double min = INF;
    29         for(int j = 1; j <= N; j++){
    30             if(low[j] < min && !vis[j]){
    31                 min = low[j];
    32                 pos = j;
    33             }
    34         }
    35         result += min;
    36         vis[pos] = 1;
    37         
    38         for(int j = 1; j <= N; j++){
    39             if(!vis[j] && mp[pos][j] < low[j]) low[j] = mp[pos][j];
    40         }
    41     }
    42     return result;
    43     
    44 }
    45 int main(){
    46     while(~scanf("%d%d", &N, &M)){
    47         memset(mp, 0, sizeof(mp));
    48         for(int i = 1; i <= N; i++){
    49             scanf("%lf%lf", &p[i].x, &p[i].y);
    50         }
    51         for(int i = 1; i <= N; i++){
    52             for(int j = 1; j <= N; j++){
    53                 if(i != j){
    54                     mp[i][j] = mp[j][i] = cal(p[i].x, p[i].y,p[j].x, p[j].y);
    55                 }
    56             }
    57         }
    58         for(int i = 1; i <= M; i++){
    59             int t1, t2;
    60             scanf("%d%d", &t1, &t2);
    61             mp[t1][t2] = mp[t2][t1] = 0;
    62         }
    63         cout<<fixed<<setprecision(2)<<prime()<<endl;
    64     //    printf("%lf
    ", prime());
    65     }
    66     
    67     return 0;
    68 }


  • 相关阅读:
    03 http请求协议与响应协议
    02 web应用程序
    Django web框架目录
    01 http协议
    Django框架
    Bootstrap栅格系统
    bootstrap介绍和引入
    Python中日志logging模块
    Python 装饰器实现单列模式
    Python 如何理解可更改元组中的可变序列
  • 原文地址:https://www.cnblogs.com/titicia/p/3917779.html
Copyright © 2020-2023  润新知