• Redis为什么单线程还那么快?线程安全吗?


    redis是单线程,线程安全的

    redis可以能够快速执行的原因:

    (1) 绝大部分请求是纯粹的内存操作(非常快速)
    (2) 采用单线程,避免了不必要的上下文切换和竞争条件
    (3) 非阻塞IO - IO多路复用

    IO多路复用中有三种方式:select,poll,epoll。需要注意的是,select,poll是线程不安全的,epoll是线程安全的

    redis内部实现采用epoll,采用了epoll+自己实现的简单的事件框架。epoll中的读、写、关闭、连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间 这3个条件不是相互独立的,特别是第一条,如果请求都是耗时的,采用单线程吞吐量及性能可想而知了。应该说redis为特殊的场景选择了合适的技术方案。

    IO多路复用(epoll):

    由于进程的执行过程是线性的(也就是顺序执行),当我们调用低速系统I/O(read,write,accept等等),进程可能阻塞,此时进程就阻塞在这个调用上,不能执行其他操作.阻塞很正常.
    接下来考虑这么一个问题:一个服务器进程和一个客户端进程通信,服务器端read(sockfd1,bud,bufsize),此时客户端进程没有发送数据,那么read(阻塞调用)将阻塞,直到客户端调用
    write(sockfd,but,size)发来数据.在一个客户和服务器通信时这没什么问题。
    当多个客户与服务器通信时当多个客户与服务器通信时,若服务器阻塞于其中一个客户sockfd1,当另一个客户的数据到达套接字sockfd2时,服务器不能处理,仍然阻塞在read(sockfd1,...)上
    ;此时问题就出现了,不能及时处理另一个客户的服务,咋么办
    ?

    epoll详解:

    首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象。
    
    不管是文件,还是套接字,还是管道,我们都可以把他们看作流。
    
    之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据;通过write,我们可以往流写入数据。现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,
    客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办? 阻塞:阻塞是个什么概念呢?比如某个时候你在等快递,但是你不知道快递什么时候过来,而且你没有别的事可以干(或者说接下来的事要等快递来了才能做);那么你可以去睡觉了,因为你知
    道快递把货送来时一定会给你打个电话(假定一定能叫醒你)。 非阻塞忙轮询:接着上面等快递的例子,如果用忙轮询的方法,那么你需要知道快递员的手机号,然后每分钟给他挂个电话:“你到了没?” 很明显一般人不会用第二种做法,不仅显很无脑,浪费话费不说,还占用了快递员大量的时间。 大部分程序也不会用第二种做法,因为第一种方法经济而简单,经济是指消耗很少的CPU时间,如果线程睡眠了,就掉出了系统的调度队列,暂时不会去瓜分CPU宝贵的时间片了。 为了了解阻塞是如何进行的,我们来讨论缓冲区,以及内核缓冲区,最终把I
    /O事件解释清楚。缓冲区的引入是为了减少频繁I/O操作而引起频繁的系统调用(你知道它很慢的),当你操作一个流时
    ,更多的是以缓冲区为单位进行操作,这是相对于用户空间而言。对于内核来说,也需要缓冲区。 假设有一个管道,进程A为管道的写入方,B为管道的读出方。 假设一开始内核缓冲区是空的,B作为读出方,被阻塞着。然后首先A往管道写入,这时候内核缓冲区由空的状态变到非空状态,内核就会产生一个事件告诉B该醒来了,这个事件姑且称之为“缓冲区
    非空”。 但是“缓冲区非空”事件通知B后,B却还没有读出数据;且内核许诺了不能把写入管道中的数据丢掉这个时候,A写入的数据会滞留在内核缓冲区中,如果内核也缓冲区满了,B仍未开始读数据,最终
    内核缓冲区会被填满,这个时候会产生一个I
    /O事件,告诉进程A,你该等等(阻塞)了,我们把这个事件定义为“缓冲区满”。 假设后来B终于开始读数据了,于是内核的缓冲区空了出来,这时候内核会告诉A,内核缓冲区有空位了,你可以从长眠中醒来了,继续写数据了,我们把这个事件叫做“缓冲区非满” 也许事件Y1已经通知了A,但是A也没有数据写入了,而B继续读出数据,知道内核缓冲区空了。这个时候内核就告诉B,你需要阻塞了!,我们把这个时间定为“缓冲区空”。 这四个情形涵盖了四个I/O事件,缓冲区满,缓冲区空,缓冲区非空,缓冲区非满(注都是说的内核缓冲区,且这四个术语都是我生造的,仅为解释其原理而造)。这四个I/O事件是进行阻塞同步的
    根本。(如果不能理解“同步”是什么概念,请学习操作系统的锁,信号量,条件变量等任务同步方面的相关知识)。 然后我们来说说阻塞I
    /O的缺点。但是阻塞I/O模式下,一个线程只能处理一个流的I/O事件。如果想要同时处理多个流,要么多进程(fork),要么多线程(pthread_create),很不幸这两种方法
    效率都不高。 于是再来考虑非阻塞忙轮询的I
    /O方式,我们发现我们可以同时处理多个流了(把一个流从阻塞模式切换到非阻塞模式再此不予讨论): while true { for i in stream[]; { if i has data read until unavailable } } 我们只要不停的把所有流从头到尾问一遍,又从头开始。这样就可以处理多个流了,但这样的做法显然不好,因为如果所有的流都没有数据,那么只会白白浪费CPU。这里要补充一点,阻塞模式下,
    内核对于I
    /O事件的处理是阻塞或者唤醒,而非阻塞模式下则把I/O事件交给其他对象(后文介绍的select以及epoll)处理甚至直接忽略。 为了避免CPU空转,可以引进了一个代理(一开始有一位叫做select的代理,后来又有一位叫做poll的代理,不过两者的本质是一样的)。这个代理比较厉害,可以同时观察许多流的I/O事件,
    在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有I/O事件时,就从阻塞态中醒来,于是我们的程序就会轮询一遍所有的流(于是我们可以把“忙”字去掉了)。代码长这样: while true { select(streams[]) for i in streams[] { if i has data read until unavailable } } 于是,如果没有I/O事件产生,我们的程序就会阻塞在select处。但是依然有个问题,我们从select那里仅仅知道了,有I/O事件发生了,但却并不知道是那几个流(可能有一个,多个,甚至全部
    ),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。 但是使用select,我们有O(n)的无差别轮询复杂度,同时处理的流越多,没一次无差别轮询时间就越长。 epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll之会把哪个流发生了怎样的I
    /O事件通知我们。此时我们对这些流的操作都是有意义的。(复杂度降低到了O(1)) 在讨论epoll的实现细节之前,先把epoll的相关操作列出: epoll_create 创建一个epoll对象,一般epollfd = epoll_create() epoll_ctl (epoll_add/epoll_del的合体),往epoll对象中增加/删除某一个流的某一个事件 比如 epoll_ctl(epollfd, EPOLL_CTL_ADD, socket, EPOLLIN);//注册缓冲区非空事件,即有数据流入 epoll_ctl(epollfd, EPOLL_CTL_DEL, socket, EPOLLOUT);//注册缓冲区非满事件,即流可以被写入 epoll_wait(epollfd,...)等待直到注册的事件发生 (注:当对一个非阻塞流的读写发生缓冲区满或缓冲区空,write/read会返回-1,并设置errno=EAGAIN。而epoll只关心缓冲区非满和缓冲区非空事件)。 一个epoll模式的代码大概的样子是: while true { active_stream[] = epoll_wait(epollfd) for i in active_stream[] { read or write till } }

    Redis关于线程安全问题:

    redis实际上是采用了线程封闭的观念,把任务封闭在一个线程,自然避免了线程安全问题,不过对于需要依赖多个redis操作的复合操作来说,依然需要锁,而且有可能是分布式锁。

  • 相关阅读:
    PHP 处理接口保证数据安全性
    zeromq使用模式实验总结
    文件描述符设置
    配置openssh实现sftp远程文件上传
    系统信号(signal)与其他(定时器,退出清理等)
    Python Subprocess Popen 管道阻塞问题分析解决
    fastcgi协议之一:定义
    命名空间与自动加载机制
    PSR规范
    细说php的异常和错误处理机制
  • 原文地址:https://www.cnblogs.com/tinyj/p/10140150.html
Copyright © 2020-2023  润新知