• nn.Conv2d卷积


    二维卷积可以处理二维数据

      1. nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))
        参数:
          in_channel: 输入数据的通道数,例RGB图片通道数为3;
          out_channel: 输出数据的通道数,这个根据模型调整;
          kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小(2,2), kennel_size=(2,3),意味着卷积大小(2,3)即非正方形卷积
          stride:步长,默认为1,与kennel_size类似,stride=2,意味着步长上下左右扫描皆为2, stride=(2,3),左右扫描步长为2,上下为3;
          padding: 零填充
      2. 例子
        输入数据X[10,16,30,32],其分别代表:10组数据,通道数为16,高度为30,宽为32
      3. import torch
        import torch.nn as nn
        
        x = torch.randn(10, 16, 30, 32) # batch, channel , height , width
        print(x.shape)
        m = nn.Conv2d(16, 33, (3, 2), (2,1))  # in_channel, out_channel ,kennel_size,stride
        print(m)
        y = m(x)
        print(y.shape)
        torch.Size([10, 16, 30, 32])
        Conv2d(16, 33, kernel_size=(3, 2), stride=(2, 1))
        torch.Size([10, 33, 14, 31])

        h = floor((h - kennel_size + 2*padding) / stride )+ 1,w同理
        x = ([10,16,30,32]),其中h=30,w=32,对于卷积核长分别是 h:3,w:2 ;对于步长分别是h:2,w:1;padding默认0;
        h = (30 - 3 + 2
        0)/ 2 +1 = 27/2 +1 = 13+1 =14
        w =(32 - 2 + 2*0)/ 1 +1 = 30/1 +1 = 30+1 =31
        batch = 10, out_channel = 33
        故: y= ([10, 33, 14, 31])

  • 相关阅读:
    在jQuery中.bind() .live() .delegate() .on()的区别
    jquery小结测试题
    揭秘子类构造函数执行过程
    过滤器
    实现AJAX的基本步骤
    AJAX 原生态
    java工程师需要学什么
    Java进阶之路
    git入门大全
    轻松学JVM
  • 原文地址:https://www.cnblogs.com/tingtin/p/13547365.html
Copyright © 2020-2023  润新知