MySQL性能分析
MySQL性能分析及explain用法的知识是本文我们主要要介绍的内容,接下来就让我们通过一些实际的例子来介绍这一过程,希望能够对您有所帮助。
1.使用explain语句去查看分析结果
如explain select * from test1 where id=1;会出现:id selecttype table type possible_keys key key_len ref rows extra各列。
其中,
type=const表示通过索引一次就找到了;
key=primary的话,表示使用了主键;
type=all,表示为全表扫描;
key=null表示没用到索引。type=ref,因为这时认为是多个匹配行,在联合查询中,一般为REF。
2.MYSQL中的组合索引
假设表有id,key1,key2,key3,把三者形成一个组合索引,则
如:
- where key1=....
- where key1=1 and key2=2
- where key1=3 and key3=3 and key2=2
根据最左原则,这些都是可以使用索引的,如from test where key1=1 order by key3,用explain分析的话,只用到了normal_key索引,但只对where子句起作用,而后面的order by需要排序。
3.使用慢查询分析
在my.ini中:
long_query_time=1
log-slow-queries=d:mysql5logsmysqlslow.log
把超过1秒的记录在慢查询日志中
可以用mysqlsla来分析之。也可以在mysqlreport中,有如
DMS分别分析了select ,update,insert,delete,replace等所占的百份比
4.MYISAM和INNODB的锁定
myisam中,注意是表锁来的,比如在多个UPDATE操作后,再SELECT时,会发现SELECT操作被锁定了,必须等所有UPDATE操作完毕后,再能SELECT
innodb的话则不同了,用的是行锁,不存在上面问题。
5.MYSQL的事务配置项
innodb_flush_log_at_trx_commit=1
表示事务提交时立即把事务日志写入磁盘,同时数据和索引也更新。
innodb_flush_log_at_trx_commit=0
事务提交时,不立即把事务日志写入磁盘,每隔1秒写一次
innodb_flush_log_at_trx_commit=2
事务提交时,立即写入磁盘文件(这里只是写入到内核缓冲区,但不立即刷新到磁盘,而是每隔1秒刷新到盘,同时更新数据和索引
mysql explain执行计划详解
下面来举一个例子来说明下 explain 的用法。
先来一张表:
CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`author_id` int(10) unsigned NOT NULL,
`category_id` int(10) unsigned NOT NULL,
`views` int(10) unsigned NOT NULL,
`comments` int(10) unsigned NOT NULL,
`title` varbinary(255) NOT NULL,
`content` text NOT NULL,
PRIMARY KEY (`id`)
);
再插几条数据:
INSERT INTO `article`
(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES
(1, 1, 1, 1, '1', '1'),
(2, 2, 2, 2, '2', '2'),
(1, 1, 3, 3, '3', '3');
需求:
查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id。
先查查试试看:
EXPLAIN
SELECT author_id
FROM `article`
WHERE category_id = 1 AND comments > 1
ORDER BY views DESC
LIMIT 1G
看看部分输出结果:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 3
Extra: Using where; Using filesort
1 row in set (0.00 sec)
很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。
嗯,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。
ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );
结果有了一定好转,但仍然很糟糕:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: range
possible_keys: x
key: x
key_len: 8
ref: NULL
rows: 1
Extra: Using where; Using filesort
1 row in set (0.00 sec)
type 变成了 range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效。
那么我们需要抛弃 comments,删除旧索引:
DROP INDEX x ON article;
然后建立新索引:
ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;
接着再运行查询:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: ref
possible_keys: y
key: y
key_len: 4
ref: const
rows: 1
Extra: Using where
1 row in set (0.00 sec)
可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。
再来看一个多表查询的例子。
首先定义 3个表 class 和 room。
CREATE TABLE IF NOT EXISTS `class` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`id`)
);
CREATE TABLE IF NOT EXISTS `book` (
`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`bookid`)
);
CREATE TABLE IF NOT EXISTS `phone` (
`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`phoneid`)
) engine = innodb;
然后再分别插入大量数据。插入数据的php脚本:
<?php
$link = mysql_connect("localhost","root","870516");
mysql_select_db("test",$link);
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into class(card) values({$j})";
mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into book(card) values({$j})";
mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into phone(card) values({$j})";
mysql_query($sql);
}
mysql_query("COMMIT");
?>
然后来看一个左连接查询:
explain select * from class left join book on class.card = book.cardG
分析结果是:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
显然第二个 ALL 是需要我们进行优化的。
建立个索引试试看:
ALTER TABLE `book` ADD INDEX y ( `card`);
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ref
possible_keys: y
key: y
key_len: 4
ref: test.class.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。
删除旧索引:
DROP INDEX y ON book;
建立新索引。
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
基本无变化。
然后来看一个右连接查询:
explain select * from class right join book on class.card = book.card;
分析结果是:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ref
possible_keys: x
key: x
key_len: 4
ref: test.book.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。
删除旧索引:
DROP INDEX x ON class;
建立新索引。
ALTER TABLE `book` ADD INDEX y ( `card`);
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
基本无变化。 最后来看看 inner join 的情况:
explain select * from class inner join book on class.card = book.card;
结果:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ref
possible_keys: x
key: x
key_len: 4
ref: test.book.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
删除旧索引:
DROP INDEX y ON book;
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
建立新索引。
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
综上所述,inner join 和 left join 差不多,都需要优化右表。而 right join 需要优化左表。
我们再来看看三表查询的例子
添加一个新索引:
ALTER TABLE `phone` ADD INDEX z ( `card`);
ALTER TABLE `book` ADD INDEX y ( `card`);
explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ref
possible_keys: y
key: y
key_len: 4
ref: test.class.card
rows: 1000
Extra:
*************************** 3. row ***************************
id: 1
select_type: SIMPLE
table: phone
type: ref
possible_keys: z
key: z
key_len: 4
ref: test.book.card
rows: 260
Extra: Using index
3 rows in set (0.00 sec)
后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。
MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。因此索引最好设置在需要经常查询的字段中。
Mysql Explain 详解
一.语法
explain < table_name >
例如: explain select * from t3 where id=3952602;
二.explain输出解释
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
1.id
我的理解是SQL执行的顺利的标识,SQL从大到小的执行.
例如:
mysql> explain select * from (select * from ( select * from t3 where id=3952602) a) b;
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | |
| 2 | DERIVED | <derived3> | system | NULL | NULL | NULL | NULL | 1 | |
| 3 | DERIVED | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | | 1 | |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
很显然这条SQL是从里向外的执行,就是从id=3 向上执行.
2. select_type
就是select类型,可以有以下几种
(1) SIMPLE
简单SELECT(不使用UNION或子查询等) 例如:
mysql> explain select * from t3 where id=3952602;
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | const | 1 | |
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
(2). PRIMARY
我的理解是最外层的select.例如:
mysql> explain select * from (select * from t3 where id=3952602) a ;
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | |
| 2 | DERIVED | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | | 1 | |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
(3).UNION
UNION中的第二个或后面的SELECT语句.例如
mysql> explain select * from t3 where id=3952602 union all select * from t3 ;
+----+--------------+------------+-------+-------------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+------------+-------+-------------------+---------+---------+-------+------+-------+
| 1 | PRIMARY | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | const | 1 | |
| 2 | UNION | t3 | ALL | NULL | NULL | NULL | NULL | 1000 | |
|NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+------------+-------+-------------------+---------+---------+-------+------+-------+
(4).DEPENDENT UNION
UNION中的第二个或后面的SELECT语句,取决于外面的查询
mysql> explain select * from t3 where id in (select id from t3 where id=3952602 union all select id from t3) ;
+----+--------------------+------------+--------+-------------------+---------+---------+-------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+------------+--------+-------------------+---------+---------+-------+------+--------------------------+
| 1 | PRIMARY | t3 | ALL | NULL | NULL | NULL | NULL | 1000 | Using where |
| 2 | DEPENDENT SUBQUERY | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | const | 1 | Using index |
| 3 | DEPENDENT UNION | t3 | eq_ref | PRIMARY,idx_t3_id | PRIMARY | 4 | func | 1 | Using where; Using index |
|NULL | UNION RESULT | <union2,3> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------------+------------+--------+-------------------+---------+---------+-------+------+--------------------------+
(4).UNION RESULT
UNION的结果。
mysql> explain select * from t3 where id=3952602 union all select * from t3 ;
+----+--------------+------------+-------+-------------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+------------+-------+-------------------+---------+---------+-------+------+-------+
| 1 | PRIMARY | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | const | 1 | |
| 2 | UNION | t3 | ALL | NULL | NULL | NULL | NULL | 1000 | |
|NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+------------+-------+-------------------+---------+---------+-------+------+-------+
(5).SUBQUERY
子查询中的第一个SELECT.
mysql> explain select * from t3 where id = (select id from t3 where id=3952602 ) ;
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------------+
| 1 | PRIMARY | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | const | 1 | |
| 2 | SUBQUERY | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | | 1 | Using index |
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------------+
(6). DEPENDENT SUBQUERY
子查询中的第一个SELECT,取决于外面的查询
mysql> explain select id from t3 where id in (select id from t3 where id=3952602 ) ;
+----+--------------------+-------+-------+-------------------+---------+---------+-------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+-------+-------------------+---------+---------+-------+------+--------------------------+
| 1 | PRIMARY | t3 | index | NULL | PRIMARY | 4 | NULL | 1000 | Using where; Using index |
| 2 | DEPENDENT SUBQUERY | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | const | 1 | Using index |
+----+--------------------+-------+-------+-------------------+---------+---------+-------+------+--------------------------+
(7).DERIVED
派生表的SELECT(FROM子句的子查询)
mysql> explain select * from (select * from t3 where id=3952602) a ;
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | |
| 2 | DERIVED | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | | 1 | |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
3.table
显示这一行的数据是关于哪张表的.
有时不是真实的表名字,看到的是derivedx(x是个数字,我的理解是第几步执行的结果)
mysql> explain select * from (select * from ( select * from t3 where id=3952602) a) b;
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | |
| 2 | DERIVED | <derived3> | system | NULL | NULL | NULL | NULL | 1 | |
| 3 | DERIVED | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | | 1 | |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
4.type
这列很重要,显示了连接使用了哪种类别,有无使用索引.
从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和ALL
(1).system
这是const联接类型的一个特例。表仅有一行满足条件.如下(t3表上的id是 primary key)
mysql> explain select * from (select * from t3 where id=3952602) a ;
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | |
| 2 | DERIVED | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | | 1 | |
+----+-------------+------------+--------+-------------------+---------+---------+------+------+-------+
(2).const
表最多有一个匹配行,它将在查询开始时被读取。因为仅有一行,在这行的列值可被优化器剩余部分认为是常数。const表很快,因为它们只读取一次!
const用于用常数值比较PRIMARY KEY或UNIQUE索引的所有部分时。在下面的查询中,tbl_name可以用于const表:
SELECT * from tbl_name WHERE primary_key=1;
SELECT * from tbl_name WHERE primary_key_part1=1和 primary_key_part2=2;
例如:
mysql> explain select * from t3 where id=3952602;
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | t3 | const | PRIMARY,idx_t3_id | PRIMARY | 4 | const | 1 | |
+----+-------------+-------+-------+-------------------+---------+---------+-------+------+-------+
(3). eq_ref
对于每个来自于前面的表的行组合,从该表中读取一行。这可能是最好的联接类型,除了const类型。它用在一个索引的所有部分被联接使用并且索引是UNIQUE或PRIMARY KEY。
eq_ref可以用于使用= 操作符比较的带索引的列。比较值可以为常量或一个使用在该表前面所读取的表的列的表达式。
在下面的例子中,MySQL可以使用eq_ref联接来处理ref_tables:
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;
例如
mysql> create unique index idx_t3_id on t3(id) ;
Query OK, 1000 rows affected (0.03 sec)
Records: 1000 Duplicates: 0 Warnings: 0
mysql> explain select * from t3,t4 where t3.id=t4.accountid;
+----+-------------+-------+--------+-------------------+-----------+---------+----------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+-------------------+-----------+---------+----------------------+------+-------+
| 1 | SIMPLE | t4 | ALL | NULL | NULL | NULL | NULL | 1000 | |
| 1 | SIMPLE | t3 | eq_ref | PRIMARY,idx_t3_id | idx_t3_id | 4 | dbatest.t4.accountid | 1 | |
+----+-------------+-------+--------+-------------------+-----------+---------+----------------------+------+-------+
(4).ref
对于每个来自于前面的表的行组合,所有有匹配索引值的行将从这张表中读取。如果联接只使用键的最左边的前缀,或如果键不是UNIQUE或PRIMARY KEY(换句话说,如果联接不能基于关键字选择单个行的话),则使用ref。如果使用的键仅仅匹配少量行,该联接类型是不错的。
ref可以用于使用=或<=>操作符的带索引的列。
在下面的例子中,MySQL可以使用ref联接来处理ref_tables:
SELECT * FROM ref_table WHERE key_column=expr;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;
例如:
mysql> drop index idx_t3_id on t3;
Query OK, 1000 rows affected (0.03 sec)
Records: 1000 Duplicates: 0 Warnings: 0
mysql> create index idx_t3_id on t3(id) ;
Query OK, 1000 rows affected (0.04 sec)
Records: 1000 Duplicates: 0 Warnings: 0
mysql> explain select * from t3,t4 where t3.id=t4.accountid;
+----+-------------+-------+------+-------------------+-----------+---------+----------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+-------------------+-----------+---------+----------------------+------+-------+
| 1 | SIMPLE | t4 | ALL | NULL | NULL | NULL | NULL | 1000 | |
| 1 | SIMPLE | t3 | ref | PRIMARY,idx_t3_id | idx_t3_id | 4 | dbatest.t4.accountid | 1 | |
+----+-------------+-------+------+-------------------+-----------+---------+----------------------+------+-------+
2 rows in set (0.00 sec)
(5). ref_or_null
该联接类型如同ref,但是添加了MySQL可以专门搜索包含NULL值的行。在解决子查询中经常使用该联接类型的优化。
在下面的例子中,MySQL可以使用ref_or_null联接来处理ref_tables:
SELECT * FROM ref_table
WHERE key_column=expr OR key_column IS NULL;
(6). index_merge
该联接类型表示使用了索引合并优化方法。在这种情况下,key列包含了使用的索引的清单,key_len包含了使用的索引的最长的关键元素。
例如:
mysql> explain select * from t4 where id=3952602 or accountid=31754306 ;
+----+-------------+-------+-------------+----------------------------+----------------------------+---------+------+------+------------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------------+----------------------------+----------------------------+---------+------+------+------------------------------------------------------+
| 1 | SIMPLE | t4 | index_merge | idx_t4_id,idx_t4_accountid | idx_t4_id,idx_t4_accountid | 4,4 | NULL | 2 | Using union(idx_t4_id,idx_t4_accountid); Using where |
+----+-------------+-------+-------------+----------------------------+----------------------------+---------+------+------+------------------------------------------------------+
1 row in set (0.00 sec)
(7). unique_subquery
该类型替换了下面形式的IN子查询的ref:
value IN (SELECT primary_key FROM single_table WHERE some_expr)
unique_subquery是一个索引查找函数,可以完全替换子查询,效率更高。
(8).index_subquery
该联接类型类似于unique_subquery。可以替换IN子查询,但只适合下列形式的子查询中的非唯一索引:
value IN (SELECT key_column FROM single_table WHERE some_expr)
(9).range
只检索给定范围的行,使用一个索引来选择行。key列显示使用了哪个索引。key_len包含所使用索引的最长关键元素。在该类型中ref列为NULL。
当使用=、<>、>、>=、<、<=、IS NULL、<=>、BETWEEN或者IN操作符,用常量比较关键字列时,可以使用range
mysql> explain select * from t3 where id=3952602 or id=3952603 ;
+----+-------------+-------+-------+-------------------+-----------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+-------------------+-----------+---------+------+------+-------------+
| 1 | SIMPLE | t3 | range | PRIMARY,idx_t3_id | idx_t3_id | 4 | NULL | 2 | Using where |
+----+-------------+-------+-------+-------------------+-----------+---------+------+------+-------------+
1 row in set (0.02 sec)
(10).index
该联接类型与ALL相同,除了只有索引树被扫描。这通常比ALL快,因为索引文件通常比数据文件小。
当查询只使用作为单索引一部分的列时,MySQL可以使用该联接类型。
(11). ALL
对于每个来自于先前的表的行组合,进行完整的表扫描。如果表是第一个没标记const的表,这通常不好,并且通常在它情况下很差。通常可以增加更多的索引而不要使用ALL,使得行能基于前面的表中的常数值或列值被检索出。
5.possible_keys
possible_keys列指出MySQL能使用哪个索引在该表中找到行。注意,该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句看是否它引用某些列或适合索引的列来提高你的查询性能。如果是这样,创造一个适当的索引并且再次用EXPLAIN检查查询
6. key
key列显示MySQL实际决定使用的键(索引)。如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。
7.key_len
key_len列显示MySQL决定使用的键长度。如果键是NULL,则长度为NULL。
使用的索引的长度。在不损失精确性的情况下,长度越短越好
8. ref
ref列显示使用哪个列或常数与key一起从表中选择行。
9. rows
rows列显示MySQL认为它执行查询时必须检查的行数。
10. Extra
该列包含MySQL解决查询的详细信息,下面详细.
(1).Distinct
一旦MYSQL找到了与行相联合匹配的行,就不再搜索了
(2).Not exists
MYSQL优化了LEFT JOIN,一旦它找到了匹配LEFT JOIN标准的行,
就不再搜索了
(3).Range checked for each
Record(index map:#)
没有找到理想的索引,因此对于从前面表中来的每一个行组合,MYSQL检查使用哪个索引,并用它来从表中返回行。这是使用索引的最慢的连接之一
(4).Using filesort
看到这个的时候,查询就需要优化了。MYSQL需要进行额外的步骤来发现如何对返回的行排序。它根据连接类型以及存储排序键值和匹配条件的全部行的行指针来排序全部行
(5).Using index
列数据是从仅仅使用了索引中的信息而没有读取实际的行动的表返回的,这发生在对表的全部的请求列都是同一个索引的部分的时候
(6).Using temporary
看到这个的时候,查询需要优化了。这里,MYSQL需要创建一个临时表来存储结果,这通常发生在对不同的列集进行ORDER BY上,而不是GROUP BY上
(7).Using where
使用了WHERE从句来限制哪些行将与下一张表匹配或者是返回给用户。如果不想返回表中的全部行,并且连接类型ALL或index,这就会发生,或者是查询有问题