1.查看hadoop版本
[hadoop@ltt1 sbin]$ hadoop version Hadoop 2.6.0-cdh5.12.0 Subversion http://github.com/cloudera/hadoop -r dba647c5a8bc5e09b572d76a8d29481c78d1a0dd Compiled by jenkins on 2017-06-29T11:33Z Compiled with protoc 2.5.0 From source with checksum 7c45ae7a4592ce5af86bc4598c5b4 This command was run using /home/hadoop/hadoop260/share/hadoop/common/hadoop-common-2.6.0-cdh5.12.0.jar
2.通过hadoop自带的jar文件,可以简单测试一些功能。
查看hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar文件所支持的MapReduce功能列表
[hadoop@ltt1 sbin]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar An example program must be given as the first argument. Valid program names are: aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files. aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files. bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi. dbcount: An example job that count the pageview counts from a database. distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi. grep: A map/reduce program that counts the matches of a regex in the input. join: A job that effects a join over sorted, equally partitioned datasets multifilewc: A job that counts words from several files. pentomino: A map/reduce tile laying program to find solutions to pentomino problems. pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method. randomtextwriter: A map/reduce program that writes 10GB of random textual data per node. randomwriter: A map/reduce program that writes 10GB of random data per node. secondarysort: An example defining a secondary sort to the reduce. sort: A map/reduce program that sorts the data written by the random writer. sudoku: A sudoku solver. teragen: Generate data for the terasort terasort: Run the terasort teravalidate: Checking results of terasort wordcount: A map/reduce program that counts the words in the input files. wordmean: A map/reduce program that counts the average length of the words in the input files. wordmedian: A map/reduce program that counts the median length of the words in the input files. wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.
3.在hdfs上创建文件夹
hadoop fs -mkdir /input
4.查看hdfs的更目录列表
[hadoop@ltt1 ~]$ hadoop fs -ls /
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2017-09-17 08:11 /input
drwx------ - hadoop supergroup 0 2017-09-17 08:07 /tmp
5.上传本地文件到hdfs
hadoop fs -put $HADOOP_HOME/*.txt /input
6.查看hdfs上input目录下文件
[hadoop@ltt1 ~]$ hadoop fs -ls /input Found 3 items -rw-r--r-- 2 hadoop supergroup 85063 2017-09-17 08:15 /input/LICENSE.txt -rw-r--r-- 2 hadoop supergroup 14978 2017-09-17 08:15 /input/NOTICE.txt -rw-r--r-- 2 hadoop supergroup 1366 2017-09-17 08:15 /input/README.txt
7.wordcount简单测试。
[hadoop@ltt1 ~]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar wordcount /input /output 17/09/17 08:19:12 INFO input.FileInputFormat: Total input paths to process : 3 17/09/17 08:19:13 INFO mapreduce.JobSubmitter: number of splits:3 17/09/17 08:19:13 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505605169997_0002 17/09/17 08:19:14 INFO impl.YarnClientImpl: Submitted application application_1505605169997_0002 17/09/17 08:19:14 INFO mapreduce.Job: The url to track the job: http://ltt1.bg.cn:9180/proxy/application_1505605169997_0002/ 17/09/17 08:19:14 INFO mapreduce.Job: Running job: job_1505605169997_0002 17/09/17 08:19:27 INFO mapreduce.Job: Job job_1505605169997_0002 running in uber mode : false 17/09/17 08:19:27 INFO mapreduce.Job: map 0% reduce 0% 17/09/17 08:19:39 INFO mapreduce.Job: map 33% reduce 0% 17/09/17 08:19:48 INFO mapreduce.Job: map 100% reduce 0% 17/09/17 08:19:50 INFO mapreduce.Job: map 100% reduce 100% 17/09/17 08:19:50 INFO mapreduce.Job: Job job_1505605169997_0002 completed successfully 17/09/17 08:19:50 INFO mapreduce.Job: Counters: 50
>>提君博客原创 http://www.cnblogs.com/tijun/ <<
File System Counters FILE: Number of bytes read=42705 FILE: Number of bytes written=588235 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=101699 HDFS: Number of bytes written=30167 HDFS: Number of read operations=12 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=3 Launched reduce tasks=1 Data-local map tasks=2 Rack-local map tasks=1 Total time spent by all maps in occupied slots (ms)=47617 Total time spent by all reduces in occupied slots (ms)=8244 Total time spent by all map tasks (ms)=47617 Total time spent by all reduce tasks (ms)=8244 Total vcore-milliseconds taken by all map tasks=47617 Total vcore-milliseconds taken by all reduce tasks=8244 Total megabyte-milliseconds taken by all map tasks=48759808 Total megabyte-milliseconds taken by all reduce tasks=8441856 Map-Reduce Framework Map input records=2035 Map output records=14239 Map output bytes=155828 Map output materialized bytes=42717 Input split bytes=292 Combine input records=14239 Combine output records=2653 Reduce input groups=2402 Reduce shuffle bytes=42717 Reduce input records=2653 Reduce output records=2402 Spilled Records=5306 Shuffled Maps =3 Failed Shuffles=0 Merged Map outputs=3 GC time elapsed (ms)=881 CPU time spent (ms)=22320 Physical memory (bytes) snapshot=690192384 Virtual memory (bytes) snapshot=10862809088 Total committed heap usage (bytes)=380243968 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=101407 File Output Format Counters Bytes Written=30167
8.查看wordcount运行结果(由于结果太长,只举出了部分结果)
[hadoop@ltt1 ~]$ hadoop fs -cat /output/* worldwide, 4 would 1 writing 2 writing, 4 written 19 xmlenc 1 year 1 you 12 your 5 zlib 1 252.227-7014(a)(1)) 1 § 1 “AS 1 “Contributor 1 “Contributor” 1 “Covered 1 “Executable” 1 “Initial 1 “Larger 1 “Licensable” 1 “License” 1 “Modifications” 1 “Original 1 “Participant”) 1 “Patent 1 “Source 1 “Your”) 1 “You” 2 “commercial 3 “control” 1
>>提君博客原创 http://www.cnblogs.com/tijun/ <<
至此,通过一个wordcount的一个小栗子,简介实践了一下hdfs的创建文件夹,上传文件,查看目录,运行wordcount实例。
>>提君博客原创 http://www.cnblogs.com/tijun/ <<