问题:编写函数计算数列前n项之和,数列为1-2+3-4+5-6+7-8+......。
这个问题简单,编写一个计算数列之和的函数太容易了。
人们通常用计算解决问题,也就是编写程序解决问题。然而,编写程序解决问题,是多解的,即不同的程序可以计算出相同的结果。
解决这个问题,编写了3个不同的函数。
函数sum1(),遇到正数项则相加,遇到负数项则相减,使用逻辑判定来决定是做相加还是相减,即对于奇数项做加法计算,对于偶数项做减法计算。
函数sum2(),也是用一般累加求和的计算,对于每一项进行求和计算。其中使用了一个小技巧,用变量sign来控制项的正负。语句sign = -sign;每一次执行后,如果sign原先是1则变为-1,如果sign原先是-1则变为1。再通过乘法运算来改变一个数的符号。这种小技巧,许多地方都有可能使用,平时需要积累。
函数sum3(),则在对数列计算公式进行推导之后再进行计算,计算量是最小的。数列从小到大,两项两项相加都是-1,所以如果给定的n是为偶数时,其值为-n/2;若给定的n为奇数时,其值为前你项之和加上第n项,即-(n-1)/2+n。这个函数的计算效率是最高的。
源程序如下:
/* 编写函数计算数列前n项之和,数列为1-2+3-4+5-6+7-8+......。 */ #include <stdio.h> /* 判断奇偶进行相加或相减计算,最后算出数列之和 */ long sum1(int n) { long sum = 0; int i; for(i=1; i<=n; i++) { if(i % 2 == 1) sum += i; else sum -= i; } return sum; } /* 使用1和-1来乘,实现负数求和计算 */ long sum2(int n) { long sum = 0; int i, sign=1; for(i=1; i<=n; i++) { sum += sign * i; sign = -sign; // 每执行一次,1变-1,或-1变1 } return sum; } /* 先进行数学推导,再用程序实现计算 */ long sum3(int n) { if(n % 2 == 1) return - (n-1) / 2 + n; else return - n / 2; } int main(void) { int i; for(i=1; i<=20; i++) printf("%d %ld %ld %ld ", i, sum1(i), sum2(i), sum3(i)); return 0; }
测试计算结果(计算到前20项之和为止)如下:
1 1 1 1
2 -1 -1 -1
3 2 2 2
4 -2 -2 -2
5 3 3 3
6 -3 -3 -3
7 4 4 4
8 -4 -4 -4
9 5 5 5
10 -5 -5 -5
11 6 6 6
12 -6 -6 -6
13 7 7 7
14 -7 -7 -7
15 8 8 8
16 -8 -8 -8
17 9 9 9
18 -9 -9 -9
19 10 10 10
20 -10 -10 -10