程序来源:Topological Sorting。
C++程序如下:
// A C++ program to print topological sorting of a DAG #include<iostream> #include <list> #include <stack> using namespace std; // Class to represent a graph class Graph { int V; // No. of vertices' // Pointer to an array containing adjacency listsList list<int> *adj; // A function used by topologicalSort void topologicalSortUtil(int v, bool visited[], stack<int> &Stack); public: Graph(int V); // Constructor // function to add an edge to graph void addEdge(int v, int w); // prints a Topological Sort of the complete graph void topologicalSort(); }; Graph::Graph(int V) { this->V = V; adj = new list<int>[V]; } void Graph::addEdge(int v, int w) { adj[v].push_back(w); // Add w to v’s list. } // A recursive function used by topologicalSort void Graph::topologicalSortUtil(int v, bool visited[], stack<int> &Stack) { // Mark the current node as visited. visited[v] = true; // Recur for all the vertices adjacent to this vertex list<int>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) topologicalSortUtil(*i, visited, Stack); // Push current vertex to stack which stores result Stack.push(v); } // The function to do Topological Sort. It uses recursive // topologicalSortUtil() void Graph::topologicalSort() { stack<int> Stack; // Mark all the vertices as not visited bool *visited = new bool[V]; for (int i = 0; i < V; i++) visited[i] = false; // Call the recursive helper function to store Topological // Sort starting from all vertices one by one for (int i = 0; i < V; i++) if (visited[i] == false) topologicalSortUtil(i, visited, Stack); // Print contents of stack while (Stack.empty() == false) { cout << Stack.top() << " "; Stack.pop(); } } // Driver program to test above functions int main() { // Create a graph given in the above diagram Graph g(6); g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1); cout << "Following is a Topological Sort of the given graph "; g.topologicalSort(); return 0; }
程序运行结果(下同):
Following is a Topological Sort of the given graph 5 4 2 3 1 0
Java程序如下:
// A Java program to print topological sorting of a DAG import java.io.*; import java.util.*; // This class represents a directed graph using adjacency // list representation class Graph { private int V; // No. of vertices private LinkedList<Integer> adj[]; // Adjacency List //Constructor Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList(); } // Function to add an edge into the graph void addEdge(int v,int w) { adj[v].add(w); } // A recursive function used by topologicalSort void topologicalSortUtil(int v, boolean visited[], Stack stack) { // Mark the current node as visited. visited[v] = true; Integer i; // Recur for all the vertices adjacent to this // vertex Iterator<Integer> it = adj[v].iterator(); while (it.hasNext()) { i = it.next(); if (!visited[i]) topologicalSortUtil(i, visited, stack); } // Push current vertex to stack which stores result stack.push(new Integer(v)); } // The function to do Topological Sort. It uses // recursive topologicalSortUtil() void topologicalSort() { Stack stack = new Stack(); // Mark all the vertices as not visited boolean visited[] = new boolean[V]; for (int i = 0; i < V; i++) visited[i] = false; // Call the recursive helper function to store // Topological Sort starting from all vertices // one by one for (int i = 0; i < V; i++) if (visited[i] == false) topologicalSortUtil(i, visited, stack); // Print contents of stack while (stack.empty()==false) System.out.print(stack.pop() + " "); } // Driver method public static void main(String args[]) { // Create a graph given in the above diagram Graph g = new Graph(6); g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1); System.out.println("Following is a Topological " + "sort of the given graph"); g.topologicalSort(); } } // This code is contributed by Aakash Hasija
Python程序如下:
#Python program to print topological sorting of a DAG from collections import defaultdict #Class to represent a graph class Graph: def __init__(self,vertices): self.graph = defaultdict(list) #dictionary containing adjacency List self.V = vertices #No. of vertices # function to add an edge to graph def addEdge(self,u,v): self.graph[u].append(v) # A recursive function used by topologicalSort def topologicalSortUtil(self,v,visited,stack): # Mark the current node as visited. visited[v] = True # Recur for all the vertices adjacent to this vertex for i in self.graph[v]: if visited[i] == False: self.topologicalSortUtil(i,visited,stack) # Push current vertex to stack which stores result stack.insert(0,v) # The function to do Topological Sort. It uses recursive # topologicalSortUtil() def topologicalSort(self): # Mark all the vertices as not visited visited = [False]*self.V stack =[] # Call the recursive helper function to store Topological # Sort starting from all vertices one by one for i in range(self.V): if visited[i] == False: self.topologicalSortUtil(i,visited,stack) # Print contents of stack print stack g= Graph(6) g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1); print "Following is a Topological Sort of the given graph" g.topologicalSort() #This code is contributed by Neelam Yadav