Highly divisible triangular number
Problem 12
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
C++:
#include <iostream> #include <cmath> using namespace std; const int FIVE_HUNDRED = 500; int count(int sum) { if(sum == 1) return 1; int ans = 0, end; end = sqrt(sum); for(int i=1; i<end; i++) if(sum % i == 0) ans++; ans <<= 1; // ans = ans * 2; if(end * end == sum) ans++; return ans; } int main() { for(int i=1, sum=1; ; ) { if(count(sum) > FIVE_HUNDRED) { cout << sum << endl; break; } sum += ++i; } return 0; }
C++:
#include <iostream> using namespace std; //#define DEBUG const int FIVE_HUNDRED = 500; int count(int sum) { if(sum == 1) return 1; int ans = 0; for(int i=1, end=sum/2; i<end; i++) if(sum % i == 0) { ans += 2; if(i * i == sum) ans--; end = sum / i; } return ans; } int main() { for(int i=1, sum=1; ; ) { #ifdef DEBUG cout << sum << " " << count(sum) << endl; #endif if(count(sum) > FIVE_HUNDRED) { cout << sum << endl; break; } sum += ++i; } return 0; }