Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4361 | Accepted: 2568 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of
3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
Source
问题简述:参见上文。
问题分析:这个问题的题目是原根,是求奇素数的原根的个数,筛选打表实现。
程序说明:(略)
题记:(略)
参考链接:(略)
AC的C++语言程序如下:
/* POJ1284 Primitive Roots */ #include <iostream> #include <stdio.h> using namespace std; const int N = 65536; int euler[N+1]; void phi() { for(int i=1; i<=N; i++) euler[i] = i; for(int i=2; i<=N; i+=2) euler[i] /= 2; for(int i=3; i<=N; i++) { if(euler[i] == i) { // 素数,用该素数筛 for(int j=i; j<=N; j+=i) euler[j] = euler[j] / i * (i - 1); } } } int main() { // 欧拉函数打表 phi(); int p; while(scanf("%d", &p) != EOF) printf("%d ", euler[p - 1]); return 0; }