• SDP(13): Scala.Future


      在前面几篇关于数据库引擎的讨论里很多的运算函数都返回了scala.Future类型的结果,因为我以为这样就可以很方便的实现了non-blocking效果。无论任何复杂的数据处理操作,只要把它们包在一个Future{...}里扔给系统运算就算完事不理了,马上可以把关注放到编程的其它部分了。在3月17日的深圳scala用户meetup里我做了个关于scala函数式编程的分享,里面我提到现在使用最多的函数组件就是scala.Future了。我想这应该在scala用户群里是个比较普遍的现象:大家都认为这是实现non-blocking最直接的一种方式。不过当我在meetup后回想到scala.Future时突然意识到它是一种即时运算值strict-value,看看下面这个例子:

      import scala.concurrent.duration._
      val fs = Future {println("run now..."); System.currentTimeMillis() }
                                             //> run now...
                                             //| fs  : scala.concurrent.Future[Long] = List()
      Await.result(fs, 1.second)             //> res0: Long = 1465907784714
      Thread.sleep(1000)
      Await.result(fs, 1.second)             //> res1: Long = 1465907784714

    可以看到fs是在Future构建时即时运算的,而且只会运算一次。如果scala Future中包括了能产生副作用的代码,在构建时就会立即产生副作用。所以我们是无法使用scala Future来编写纯函数的,如下:

    val progA:Future[A] = for {
        b <- readFromB
        _ <- writeToLocationA(a)
        r <- getResult
    } yield r
    
    /* location A content updated */
    
    ... /* later */
    
    val progB: Future[B] = for {
        a <- readFromA
        _ <- updateLocationA
        c <- getResult
    }
    
    ...
    
    val program: Future[Unit] = for {
        _ <- progA
        _ <- progB
    } yield()

    在上面这个例子里最终的目的是运算program:由progA,progB两个子程序组成。这两个子程序在构建的时候已经开始了运算,随时都会更新localionA产生副作用。想象一下如果progA,progB是埋藏在其它一大堆源代码里的话program的运算结果肯定是无法预测的。换言之用Future来进行函数式组合就是在给自己挖坑嘛,最起码要记住这些Future的构建顺序,而这个要求在大型的协作开发软件工程里基本上是不可能的事。除了无法安全进行函数组合外scala.Future还缺少运算和线程控制的功能,比如:

    无法控制什么时候开始运算

    无法控制在在哪个线程运算

    无法终止开始运算的程序

    缺少有效的异常处理机制如fallback,retry等

    scalaz和monix函数组件库里都提供了Task来辅助Future实现函数组合。scalaz.Task是基于scalaz.Future的:

    sealed abstract class Future[+A] {
    ...
    object Future {
      case class Now[+A](a: A) extends Future[A]
      case class Async[+A](onFinish: (A => Trampoline[Unit]) => Unit) extends Future[A]
      case class Suspend[+A](thunk: () => Future[A]) extends Future[A]
      case class BindSuspend[A,B](thunk: () => Future[A], f: A => Future[B]) extends Future[B]
      case class BindAsync[A,B](onFinish: (A => Trampoline[Unit]) => Unit,
                                f: A => Future[B]) extends Future[B]
    ...

    scalaz.Future[A]明显就是个Free Monad。它的结构化表达方式分别有Now,Async,Suspend,BindSuspend,BindAsync。我们可以用这些结构实现flatMap函数,所以Future就是Free Monad:

    def flatMap[B](f: A => Future[B]): Future[B] = this match {
        case Now(a) => Suspend(() => f(a))
        case Suspend(thunk) => BindSuspend(thunk, f)
        case Async(listen) => BindAsync(listen, f)
        case BindSuspend(thunk, g) =>
          Suspend(() => BindSuspend(thunk, g andThen (_ flatMap f)))
        case BindAsync(listen, g) =>
          Suspend(() => BindAsync(listen, g andThen (_ flatMap f)))
      }

    因为free structure类型支持算式/算法关注分离,我们可以用scalaz.Future来描述程序功能而不涉及正真运算。这样,在上面那个例子里如果progA,progB是Task类型的,那么program的构建就是安全的,因为我们最后是用Task.run来真正进行运算产生副作用的。scalaz.Task又在scalaz.Future功能基础上再增加了异常处理等功能。

    monix.Task采取了延迟运算的方式来实现算式/算法分离,下面是这个类型的基础构建结构:

      /** [[Task]] state describing an immediate synchronous value. */
      private[eval] final case class Now[A](value: A) extends Task[A] {...}
      /** [[Task]] state describing an immediate synchronous value. */
      private[eval] final case class Eval[A](thunk: () => A)
        extends Task[A]
    
      /** Internal state, the result of [[Task.defer]] */
      private[eval] final case class Suspend[+A](thunk: () => Task[A])
        extends Task[A]
    
      /** Internal [[Task]] state that is the result of applying `flatMap`. */
      private[eval] final case class FlatMap[A, B](source: Task[A], f: A => Task[B])
        extends Task[B]
     /** Internal [[Coeval]] state that is the result of applying `map`. */
      private[eval] final case class Map[S, +A](source: Task[S], f: S => A, index: Int)
        extends Task[A] with (S => Task[A]) {
    
        def apply(value: S): Task[A] =
          new Now(f(value))
        override def toString: String =
          super[Task].toString
      }
    
      /** Constructs a lazy [[Task]] instance whose result will
        * be computed asynchronously.
        *
        * Unsafe to build directly, only use if you know what you're doing.
        * For building `Async` instances safely, see [[create]].
        */
      private[eval] final case class Async[+A](register: (Context, Callback[A]) => Unit)
        extends Task[A]  

    下面的例子里示范了如果用这些结构来构件monix.Task: 

    object Task extends TaskInstancesLevel1 {
      /** Returns a new task that, when executed, will emit the result of
        * the given function, executed asynchronously.
        *
        * This operation is the equivalent of:
        * {{{
        *   Task.eval(f).executeAsync
        * }}}
        *
        * @param f is the callback to execute asynchronously
        */
      def apply[A](f: => A): Task[A] =
        eval(f).executeAsync
    
      /** Returns a `Task` that on execution is always successful, emitting
        * the given strict value.
        */
      def now[A](a: A): Task[A] =
        Task.Now(a)
    
      /** Lifts a value into the task context. Alias for [[now]]. */
      def pure[A](a: A): Task[A] = now(a)
    
      /** Returns a task that on execution is always finishing in error
        * emitting the specified exception.
        */
      def raiseError[A](ex: Throwable): Task[A] =
        Error(ex)
    
      /** Promote a non-strict value representing a Task to a Task of the
        * same type.
        */
      def defer[A](fa: => Task[A]): Task[A] =
        Suspend(fa _)
    ...}
        source match {
          case Task.Now(v) => F.pure(v)
          case Task.Error(e) => F.raiseError(e)
          case Task.Eval(thunk) => F.delay(thunk())
          case Task.Suspend(thunk) => F.suspend(to(thunk()))
          case other => suspend(other)(F)
        }

    这个Suspend结构就是延迟运算的核心。monix.Task是一套新出现的解决方案,借鉴了许多scalaz.Task的概念和方法同时又加入了很多优化、附加的功能,并且github更新也很近期。使用monix.Task应该是一个正确的选择。

    首先我们必须解决scala.Future与monix.Task之间的转换:

      import monix.eval.Task
      import monix.execution.Scheduler.Implicits.global
      
      final class FutureToTask[A](x: => Future[A]) {
        def asTask: Task[A] = Task.deferFuture[A(x)
      }
    
      final class TaskToFuture[A](x: => Task[A]) {
        def asFuture: Future[A] = x.runAsync
      }

    下面是一个完整的Task用例:

    import scala.concurrent._
    import scala.util._
    import scala.concurrent.duration._
    import monix.eval.Task
    import monix.execution._
    object MonixTask extends App {
    import monix.execution.Scheduler.Implicits.global
    
      // Executing a sum, which (due to the semantics of apply)
      // will happen on another thread. Nothing happens on building
      // this instance though, this expression is pure, being
      // just a spec! Task by default has lazy behavior ;-)
      val task = Task { 1 + 1 }
    
      // Tasks get evaluated only on runAsync!
      // Callback style:
      val cancelable = task.runOnComplete {
          case Success(value) =>
            println(value)
          case Failure(ex) =>
            System.out.println(s"ERROR: ${ex.getMessage}")
      }
      //=> 2
    
      // If we change our mind...
      cancelable.cancel()
    
      // Or you can convert it into a Future
      val future: CancelableFuture[Int] =
        task.runAsync
    
      // Printing the result asynchronously
      future.foreach(println)
      //=> 2
    
      val task = Task.now { println("Effect"); "Hello!" }
      //=> Effect
      // task: monix.eval.Task[String] = Delay(Now(Hello!))
    }

    下面我们就看看各种Task的构建方法:

      /* ------ taskNow ----*/
      val taskNow = Task.now { println("Effect"); "Hello!" }
      //=> Effect
      // taskNow: monix.eval.Task[String] = Delay(Now(Hello!))
    
      /* --------taskDelay possible another on thread ------*/
      val taskDelay = Task { println("Effect"); "Hello!" }
      // taskDelay: monix.eval.Task[String] = Delay(Always(<function0>))
    
      taskDelay.runAsync.foreach(println)
      //=> Effect
      //=> Hello!
    
      // The evaluation (and thus all contained side effects)
      // gets triggered on each runAsync:
      taskDelay.runAsync.foreach(println)
      //=> Effect
      //=> Hello!
    
      /* --------taskOnce ------- */
      val taskOnce = Task.evalOnce { println("Effect"); "Hello!" }
      // taskOnce: monix.eval.Task[String] = EvalOnce(<function0>)
    
      taskOnce.runAsync.foreach(println)
      //=> Effect
      //=> Hello!
    
      // Result was memoized on the first run!
      taskOnce.runAsync.foreach(println)
      //=> Hello!
    
      /* --------taskFork ------- */
      // this guarantees that our task will get executed asynchronously:
      val task = Task(Task.eval("Hello!")).executeAsync
      //val task = Task.fork(Task.eval("Hello!"))
    
      // The default scheduler
      import monix.execution.Scheduler.Implicits.global
    
      // Creating a special scheduler meant for I/O
      import monix.execution.Scheduler
      lazy val io = Scheduler.io(name="my-io")
      //Then we can manage what executes on which:
    
      // Override the default Scheduler by fork:
      val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}"))
      val forked = source.executeOn(io,true)
      // val forked = Task.fork(source, io)
    
      source.runAsync
      //=> Running on thread: ForkJoinPool-1-worker-1
      forked.runAsync
      //=> Running on thread: my-io-4
    
      /* --------taskError ------- */
      import scala.concurrent.TimeoutException
    
      val taskError = Task.raiseError[Int](new TimeoutException)
      // error: monix.eval.Task[Int] =
      //   Delay(Error(java.util.concurrent.TimeoutException))
    
      taskError.runOnComplete(result => println(result))
      //=> Failure(java.util.concurrent.TimeoutException)

    下面是一些控制函数:

      final def doOnFinish(f: Option[Throwable] => Task[Unit]): Task[A] =
      final def doOnCancel(callback: Task[Unit]): Task[A] =
      final def onCancelRaiseError(e: Throwable): Task[A] =
      final def onErrorRecoverWith[B >: A](pf: PartialFunction[Throwable, Task[B]]): Task[B] =
      final def onErrorHandleWith[B >: A](f: Throwable => Task[B]): Task[B] =
      final def onErrorFallbackTo[B >: A](that: Task[B]): Task[B] =
      final def restartUntil(p: (A) => Boolean): Task[A] =
      final def onErrorRestart(maxRetries: Long): Task[A] =
      final def onErrorRestartIf(p: Throwable => Boolean): Task[A] =
      final def onErrorRestartLoop[S, B >: A](initial: S)(f: (Throwable, S, S => Task[B]) => Task[B]): Task[B] =
      final def onErrorHandle[U >: A](f: Throwable => U): Task[U] =
      final def onErrorRecover[U >: A](pf: PartialFunction[Throwable, U]): Task[U] =

    Task是通过asyncRun和runSync来进行异步、同步实际运算的: 

      def runAsync(implicit s: Scheduler): CancelableFuture[A] =
      def runAsync(cb: Callback[A])(implicit s: Scheduler): Cancelable =
      def runAsyncOpt(implicit s: Scheduler, opts: Options): CancelableFuture[A] =
      def runAsyncOpt(cb: Callback[A])(implicit s: Scheduler, opts: Options): Cancelable =
      final def runSyncMaybe(implicit s: Scheduler): Either[CancelableFuture[A], A] =
      final def runSyncMaybeOpt(implicit s: Scheduler, opts: Options): Either[CancelableFuture[A], A] = 
      final def runSyncUnsafe(timeout: Duration)
        (implicit s: Scheduler, permit: CanBlock): A =
      final def runSyncUnsafeOpt(timeout: Duration)
        (implicit s: Scheduler, opts: Options, permit: CanBlock): A =
      final def runOnComplete(f: Try[A] => Unit)(implicit s: Scheduler): Cancelable =

    下面示范了两个通常的Task运算方法:

      val task1 = Task {println("sum:"); 1+2}.delayExecution(1 second)
      println(task1.runSyncUnsafe(2 seconds))
      
      task1.runOnComplete {
        case Success(r) => println(s"result: $r")
        case Failure(e) => println(e.getMessage)
      }

    下面是本次示范的源代码:

    import scala.util._
    import scala.concurrent.duration._
    import monix.eval.Task
    import monix.execution._
    object MonixTask extends App {
    import monix.execution.Scheduler.Implicits.global
    
    
    
      // Executing a sum, which (due to the semantics of apply)
      // will happen on another thread. Nothing happens on building
      // this instance though, this expression is pure, being
      // just a spec! Task by default has lazy behavior ;-)
      val task = Task { 1 + 1 }
    
      // Tasks get evaluated only on runAsync!
      // Callback style:
      val cancelable = task.runOnComplete {
          case Success(value) =>
            println(value)
          case Failure(ex) =>
            System.out.println(s"ERROR: ${ex.getMessage}")
      }
      //=> 2
    
      // If we change our mind...
      cancelable.cancel()
    
      // Or you can convert it into a Future
      val future: CancelableFuture[Int] =
        task.runAsync
    
      // Printing the result asynchronously
      future.foreach(println)
      //=> 2
    
      /* ------ taskNow ----*/
      val taskNow = Task.now { println("Effect"); "Hello!" }
      //=> Effect
      // taskNow: monix.eval.Task[String] = Delay(Now(Hello!))
    
      /* --------taskDelay possible another on thread ------*/
      val taskDelay = Task { println("Effect"); "Hello!" }
      // taskDelay: monix.eval.Task[String] = Delay(Always(<function0>))
    
      taskDelay.runAsync.foreach(println)
      //=> Effect
      //=> Hello!
    
      // The evaluation (and thus all contained side effects)
      // gets triggered on each runAsync:
      taskDelay.runAsync.foreach(println)
      //=> Effect
      //=> Hello!
    
      /* --------taskOnce ------- */
      val taskOnce = Task.evalOnce { println("Effect"); "Hello!" }
      // taskOnce: monix.eval.Task[String] = EvalOnce(<function0>)
    
      taskOnce.runAsync.foreach(println)
      //=> Effect
      //=> Hello!
    
      // Result was memoized on the first run!
      taskOnce.runAsync.foreach(println)
      //=> Hello!
    
      /* --------taskFork ------- */
      // this guarantees that our task will get executed asynchronously:
      val task = Task(Task.eval("Hello!")).executeAsync
      //val task = Task.fork(Task.eval("Hello!"))
    
      // The default scheduler
      import monix.execution.Scheduler.Implicits.global
    
      // Creating a special scheduler meant for I/O
      import monix.execution.Scheduler
      lazy val io = Scheduler.io(name="my-io")
      //Then we can manage what executes on which:
    
      // Override the default Scheduler by fork:
      val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}"))
      val forked = source.executeOn(io,true)
      // val forked = Task.fork(source, io)
    
      source.runAsync
      //=> Running on thread: ForkJoinPool-1-worker-1
      forked.runAsync
      //=> Running on thread: my-io-4
    
      /* --------taskError ------- */
      import scala.concurrent.TimeoutException
    
      val taskError = Task.raiseError[Int](new TimeoutException)
      // error: monix.eval.Task[Int] =
      //   Delay(Error(java.util.concurrent.TimeoutException))
    
      taskError.runOnComplete(result => println(result))
      //=> Failure(java.util.concurrent.TimeoutException)
    
      
    
      val task1 = Task {println("sum:"); 1+2}.delayExecution(1 second)
      println(task1.runSyncUnsafe(2 seconds))
    
      task1.runOnComplete {
        case Success(r) => println(s"result: $r")
        case Failure(e) => println(e.getMessage)
      }
    
    }

     

  • 相关阅读:
    .NET中26个优化性能方法
    通过纯真IP地址实现根据用户地址显示信息
    jQuery中json中关于带有html代码网页的处理
    gb2312提交的url编码转换成utf8的查询
    c# Bitmap byte[] Stream 文件相互转换
    WebClient 上传文件
    进程监控模块配置与使用 ------ACE(开源项目)
    boost配置
    C++学习总结3
    SAE云平台的使用
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/8616127.html
Copyright © 2020-2023  润新知