• SDP(4):ScalikeJDBC- JDBC-Engine:Updating


        在上一篇博文里我们把JDBC-Engine的读取操作部分分离出来进行了讨论,在这篇准备把更新Update部分功能介绍一下。当然,JDBC-Engine的功能是基于ScalikeJDBC的,所有的操作和属性都包嵌在SQL这个类型中:

    /**
     * SQL abstraction.
     *
     * @param statement SQL template
     * @param rawParameters parameters
     * @param f  extractor function
     * @tparam A return type
     */
    abstract class SQL[A, E <: WithExtractor](
      val statement: String,
      private[scalikejdbc] val rawParameters: Seq[Any]
    )(f: WrappedResultSet => A)
    {...}

    Update功能置于下面这几个子类中:

    /**
     * SQL which execute java.sql.Statement#executeUpdate().
     *
     * @param statement SQL template
     * @param parameters parameters
     * @param before before filter
     * @param after after filter
     */
    class SQLUpdate(val statement: String, val parameters: Seq[Any], val tags: Seq[String] = Nil)(
        val before: (PreparedStatement) => Unit
    )(
        val after: (PreparedStatement) => Unit
    ) {
    
      def apply()(implicit session: DBSession): Int = {
        val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
        session match {
          case AutoSession =>
            DB.autoCommit(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
          case NamedAutoSession(name, _) =>
            NamedDB(name, session.settings).autoCommit(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
          case ReadOnlyAutoSession =>
            DB.readOnly(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
          case ReadOnlyNamedAutoSession(name, _) =>
            NamedDB(name, session.settings).readOnly(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
          case _ =>
            DBSessionWrapper(session, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*)
        }
      }
    
    }
    
    /**
     * SQL which execute java.sql.Statement#execute().
     *
     * @param statement SQL template
     * @param parameters parameters
     * @param before before filter
     * @param after after filter
     */
    class SQLExecution(val statement: String, val parameters: Seq[Any], val tags: Seq[String] = Nil)(
        val before: (PreparedStatement) => Unit
    )(
        val after: (PreparedStatement) => Unit
    ) {
    
      def apply()(implicit session: DBSession): Boolean = {
        val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
        val f: DBSession => Boolean = DBSessionWrapper(_, attributesSwitcher).executeWithFilters(before, after, statement, parameters: _*)
        // format: OFF
        session match {
          case AutoSession                       => DB.autoCommit(f)
          case NamedAutoSession(name, _)         => NamedDB(name, session.settings).autoCommit(f)
          case ReadOnlyAutoSession               => DB.readOnly(f)
          case ReadOnlyNamedAutoSession(name, _) => NamedDB(name, session.settings).readOnly(f)
          case _                                 => f(session)
        }
        // format: ON
      }
    
    }
    /**
     * SQL which execute java.sql.Statement#executeBatch().
     *
     * @param statement SQL template
     * @param parameters parameters
     */
    class SQLBatch(val statement: String, val parameters: Seq[Seq[Any]], val tags: Seq[String] = Nil) {
    
      def apply[C[_]]()(implicit session: DBSession, cbf: CanBuildFrom[Nothing, Int, C[Int]]): C[Int] = {
        val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
        val f: DBSession => C[Int] = DBSessionWrapper(_, attributesSwitcher).batch(statement, parameters: _*)
        // format: OFF
        session match {
          case AutoSession                       => DB.autoCommit(f)
          case NamedAutoSession(name, _)         => NamedDB(name, session.settings).autoCommit(f)
          case ReadOnlyAutoSession               => DB.readOnly(f)
          case ReadOnlyNamedAutoSession(name, _) => NamedDB(name, session.settings).readOnly(f)
          case _                                 => f(session)
        }
        // format: ON
      }
    
    }

    按照JDBC-Engine的功能设计要求,我们大约把Update功能分成数据表构建操作DDL、批次运算Batch、和普通Update几种类型。我们是通过JDBCContext来定义具体的Update功能类型:

    object JDBCContext {
        type SQLTYPE = Int
        val SQL_SELECT: Int = 0
        val SQL_EXEDDL= 1
        val SQL_UPDATE = 2
        val RETURN_GENERATED_KEYVALUE = true
        val RETURN_UPDATED_COUNT = false
    
      }
    
      case class JDBCContext(
                              dbName: Symbol,
                              statements: Seq[String] = Nil,
                              parameters: Seq[Seq[Any]] = Nil,
                              fetchSize: Int = 100,
                              queryTimeout: Option[Int] = None,
                              queryTags: Seq[String] = Nil,
                              sqlType: JDBCContext.SQLTYPE = JDBCContext.SQL_SELECT,
                              batch: Boolean = false,
                              returnGeneratedKey: Seq[Option[Any]] = Nil,
                              // no return: None, return by index: Some(1), by name: Some("id")
                              preAction: Option[PreparedStatement => Unit] = None,
                              postAction: Option[PreparedStatement => Unit] = None) {
    
        ctx =>
    
        //helper functions
    
        def appendTag(tag: String): JDBCContext = ctx.copy(queryTags = ctx.queryTags :+ tag)
    
        def appendTags(tags: Seq[String]): JDBCContext = ctx.copy(queryTags = ctx.queryTags ++ tags)
    
        def setFetchSize(size: Int): JDBCContext = ctx.copy(fetchSize = size)
    
        def setQueryTimeout(time: Option[Int]): JDBCContext = ctx.copy(queryTimeout = time)
    
        def setPreAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
            !ctx.batch && ctx.statements.size == 1)
            ctx.copy(preAction = action)
          else
            throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
        }
    
        def setPostAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
            !ctx.batch && ctx.statements.size == 1)
            ctx.copy(postAction = action)
          else
            throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
        }
    
        def appendDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_EXEDDL) {
            ctx.copy(
              statements = ctx.statements ++ Seq(_statement),
              parameters = ctx.parameters ++ Seq(Seq(_parameters))
            )
          } else
            throw new IllegalStateException("JDBCContex setting error: option not supported!")
        }
    
        def appendUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_UPDATE && !ctx.batch) {
            ctx.copy(
              statements = ctx.statements ++ Seq(_statement),
              parameters = ctx.parameters ++ Seq(_parameters),
              returnGeneratedKey = ctx.returnGeneratedKey ++ (if (_returnGeneratedKey) Seq(Some(1)) else Seq(None))
            )
          } else
            throw new IllegalStateException("JDBCContex setting error: option not supported!")
        }
    
        def appendBatchParameters(_parameters: Any*): JDBCContext = {
          if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
            throw new IllegalStateException("JDBCContex setting error: batch parameters only supported for SQL_UPDATE and batch = true!")
    
          var matchParams = true
          if (ctx.parameters != Nil)
            if (ctx.parameters.head.size != _parameters.size)
              matchParams = false
          if (matchParams) {
            ctx.copy(
              parameters = ctx.parameters ++ Seq(_parameters)
            )
          } else
            throw new IllegalStateException("JDBCContex setting error: batch command parameters not match!")
        }
    
        def setBatchReturnGeneratedKeyOption(returnKey: Boolean): JDBCContext = {
          if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
             throw new IllegalStateException("JDBCContex setting error: only supported in batch update commands!")
          ctx.copy(
            returnGeneratedKey = if (returnKey) Seq(Some(1)) else Nil
          )
        }
    
         def setQueryCommand(_statement: String, _parameters: Any*): JDBCContext = {
            ctx.copy(
              statements = Seq(_statement),
              parameters = Seq(_parameters),
              sqlType = JDBCContext.SQL_SELECT,
              batch = false
            )
          }
    
          def setDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
            ctx.copy(
              statements = Seq(_statement),
              parameters = Seq(_parameters),
              sqlType = JDBCContext.SQL_EXEDDL,
              batch = false
            )
          }
    
          def setUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
            ctx.copy(
              statements = Seq(_statement),
              parameters = Seq(_parameters),
              returnGeneratedKey = if (_returnGeneratedKey) Seq(Some(1)) else Seq(None),
              sqlType = JDBCContext.SQL_UPDATE,
              batch = false
            )
          }
          def setBatchCommand(_statement: String): JDBCContext = {
            ctx.copy (
              statements = Seq(_statement),
              sqlType = JDBCContext.SQL_UPDATE,
              batch = true
            )
          }
      }

    JDBCContext还提供了不少的Helper函数来协助构建特别功能的JDBCContext对象,如:setQueryCommand, setDDLCommand, setUpdateCommand, setBatchCommand。这些Helper函数提供Update功能定义的几个主要元素包括:SQL语句主体包括参数占位的statement、输入参数parameter、是否需要返回系统自动产生的主键returnGeneratedKey。在ScalikeJDBC中所有类型的Update功能可以用下面几类内部函数实现,包括:

      private[this] def batchInternal[C[_], A](
        template: String,
        paramsList: Seq[Seq[Any]],
        execute: StatementExecutor => scala.Array[A]
      )(implicit cbf: CanBuildFrom[Nothing, A, C[A]]): C[A] = {
        ensureNotReadOnlySession(template)
        paramsList match {
          case Nil => Seq.empty[A].to[C]
          case _ =>
            using(createBatchStatementExecutor(
              conn = conn,
              template = template,
              returnGeneratedKeys = false,
              generatedKeyName = None
            )) { executor =>
              paramsList.foreach {
                params =>
                  executor.bindParams(params)
                  executor.addBatch()
              }
              execute(executor).to[C]
            }
        }
      }
      private[this] def updateWithFiltersInternal[A](
        returnGeneratedKeys: Boolean,
        before: (PreparedStatement) => Unit,
        after: (PreparedStatement) => Unit,
        template: String,
        execute: StatementExecutor => A,
        params: Seq[Any]
      ): A = {
        ensureNotReadOnlySession(template)
        using(createStatementExecutor(
          conn = conn,
          template = template,
          params = params,
          returnGeneratedKeys = returnGeneratedKeys
        )) {
          executor =>
            before(executor.underlying)
            val count = execute(executor)
            after(executor.underlying)
            count
        }
      }
      private[this] def updateWithAutoGeneratedKeyNameAndFiltersInternal[A](
        returnGeneratedKeys: Boolean,
        generatedKeyName: String,
        before: (PreparedStatement) => Unit,
        after: (PreparedStatement) => Unit,
        template: String,
        execute: StatementExecutor => A,
        params: Seq[Any]
      ): A = {
        ensureNotReadOnlySession(template)
        using(createStatementExecutor(
          conn = conn,
          template = template,
          params = params,
          returnGeneratedKeys = returnGeneratedKeys,
          generatedKeyName = Option(generatedKeyName)
        )) {
          executor =>
            before(executor.underlying)
            val count = execute(executor)
            after(executor.underlying)
            count
        }
      }

    我们可以看到所有类型的Update都是通过构建StatementExecutor并按其属性进行运算来实现的:

    /**
     * java.sql.Statement Executor.
     *
     * @param underlying preparedStatement
     * @param template SQL template
     * @param singleParams parameters for single execution (= not batch execution)
     * @param isBatch is batch flag
     */
    case class StatementExecutor(
        underlying: PreparedStatement,
        template: String,
        connectionAttributes: DBConnectionAttributes,
        singleParams: Seq[Any] = Nil,
        tags: Seq[String] = Nil,
        isBatch: Boolean = false,
        settingsProvider: SettingsProvider = SettingsProvider.default
    ) extends LogSupport with UnixTimeInMillisConverterImplicits with AutoCloseable {...}

    这个StatementExcutor类的属性和我们的JDBCContext属性很接近。好了,回到JDBC-Engine Update功能定义。首先是DDL功能:

     def jdbcExcuteDDL(ctx: JDBCContext): Try[String] = {
           if (ctx.sqlType != SQL_EXEDDL) {
            Failure(new IllegalStateException("JDBCContex setting error: sqlType must be 'SQL_EXEDDL'!"))
          }
          else {
            NamedDB(ctx.dbName) localTx { implicit session =>
              Try {
                    ctx.statements.foreach { stm =>
                      val ddl = new SQLExecution(statement = stm, parameters = Nil)(
                        before = WrappedResultSet => {})(
                        after = WrappedResultSet => {})
    
                      ddl.apply()
                  }
                "SQL_EXEDDL executed succesfully."
              }
            }
          }
        }

     所有JDBC-Engine的Update功能都是一个事务处理Transaction中的多条更新语句。DDL语句不需要参数所以只需要提供statement就足够了。下面是这个函数的使用示范:

     ConfigDBsWithEnv("dev").setup('h2)
      ConfigDBsWithEnv("dev").loadGlobalSettings()
    
      val dropSQL: String ="""
          drop table members
        """
    
      val createSQL: String ="""
        create table members (
          id serial not null primary key,
          name varchar(30) not null,
          description varchar(1000),
          birthday date,
          created_at timestamp not null,
          picture blob
        )"""
    
      var ctx = JDBCContext('h2)
        try {
          ctx = ctx.setDDLCommand(dropSQL)
            .appendDDLCommand(createSQL)
        }
        catch {
           case e: Exception => println(e.getMessage)
        }
    
      val resultCreateTable = jdbcExcuteDDL(ctx)
    
      resultCreateTable match {
        case Success(msg) => println(msg)
        case Failure(err) => println(s"${err.getMessage}")
      }

    在这里我们修改了上次使用的members表,增加了一个blob类的picture列。这个示范在一个完整的Transaction里包括了两条DDL语句。

    批次更新batch-update是指多条输入参数在一条统一的statement上施用:

      def jdbcBatchUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          if (ctx.statements == Nil)
            throw new IllegalStateException("JDBCContex setting error: statements empty!")
          if (ctx.sqlType != SQL_UPDATE) {
            Failure(new IllegalStateException("JDBCContex setting error: sqlType must be 'SQL_UPDATE'!"))
          }
          else {
            if (ctx.batch) {
              if (noReturnKey(ctx)) {
                val usql = SQL(ctx.statements.head)
                  .tags(ctx.queryTags: _*)
                  .batch(ctx.parameters: _*)
                Try {
                  NamedDB(ctx.dbName) localTx { implicit session =>
                    ctx.queryTimeout.foreach(session.queryTimeout(_))
                    usql.apply[Seq]()
                    Seq.empty[Long].to[C]
                  }
                }
              } else {
                val usql = new SQLBatchWithGeneratedKey(ctx.statements.head, ctx.parameters, ctx.queryTags)(None)
                Try {
                  NamedDB(ctx.dbName) localTx { implicit session =>
                    ctx.queryTimeout.foreach(session.queryTimeout(_))
                    usql.apply[C]()
                  }
                }
              }
    
            } else {
              Failure(new IllegalStateException("JDBCContex setting error: must set batch = true !"))
            }
          }
        }

    如果batch-update是某种Insert操作的话我们可以通过cox.batch注明返回由JDBC系统自动产生的唯一键。这些主键一般在构建表时注明,包括:serial, auto_increment等。如果不返回主键则返回update语句的更新状态如更新数据条数等。在上面这个函数里SQLBatchWithGeneratedKey.apply()返回insert数据主键,所以statement必须是INSERT语句。SQLBatch.apply()则用来运算update语句并返回更新数据的条数。下面是jdbcBatchUpdate函数的使用示范:

     val insertSQL = "insert into members(name,birthday,description,created_at,picture) values (?, ?, ?, ?, ?)"
      val dateCreated = DateTime.now
    
      import java.io.FileInputStream
    
      val picfile = new File("/users/tiger/Nobody.png")
      val fis = new FileInputStream(picfile)
    
      ctx = JDBCContext('h2)
      try {
        ctx = ctx.setBatchCommand(insertSQL).appendBatchParameters(
          "John",new LocalDate("2008-03-01"),"youngest user",dateCreated,None).appendBatchParameters(
          "peter", None, "no birth date", dateCreated, fis)
          .appendBatchParameters(
            "susan", None, "no birth date", dateCreated, None)
          .setBatchReturnGeneratedKeyOption(JDBCContext.RETURN_GENERATED_KEYVALUE)
      }
      catch {
        case e: Exception => println(e.getMessage)
      }
    
      var resultInserts = jdbcBatchUpdate(ctx)
    
      resultInserts match {
        case Success(msg) => println(msg)
        case Failure(err) => println(s"${err.getMessage}")
      }

    上面这个例子里一个transaction批次包含了三条Insert语句,其中一条涉及存入picture字段:我们只需要把图像文件InputStream作为普通参数传人即可。我们也可以把任何类型的非batch-update语句捆绑在统一的transaction里运算,而且可以指定每条update返回类型:自动产生的主键或者更新数据条数:

    def jdbcTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          if (ctx.statements == Nil)
            throw new IllegalStateException("JDBCContex setting error: statements empty!")
          if (ctx.sqlType != SQL_UPDATE) {
            Failure(new IllegalStateException("JDBCContex setting error: sqlType must be 'SQL_UPDATE'!"))
          }
          else {
            if (!ctx.batch) {
              if (ctx.statements.size == 1)
                singleTxUpdate(ctx)
              else
                multiTxUpdates(ctx)
            } else
              Failure(new IllegalStateException("JDBCContex setting error: must set batch = false !"))
    
          }
        }

    这个update函数又被细分为单条语句singleTxUpdate和多条语句multiTxUpdates。无论单条或多条update函数又被分为返回主键或更新状态类型的函数:

     private def singleTxUpdateWithReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
           implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
           val Some(key) :: xs = ctx.returnGeneratedKey
           val params: Seq[Any] = ctx.parameters match {
             case Nil => Nil
             case p@_ => p.head
           }
           val usql = new SQLUpdateWithGeneratedKey(ctx.statements.head, params, ctx.queryTags)(key)
           Try {
             NamedDB(ctx.dbName) localTx { implicit session =>
               session.fetchSize(ctx.fetchSize)
               ctx.queryTimeout.foreach(session.queryTimeout(_))
               val result = usql.apply()
               Seq(result).to[C]
             }
           }
         }
    
          private def singleTxUpdateNoReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
            implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          val params: Seq[Any] = ctx.parameters match {
            case Nil => Nil
            case p@_ => p.head
          }
          val before = ctx.preAction match {
            case None => pstm: PreparedStatement => {}
            case Some(f) => f
          }
          val after = ctx.postAction match {
            case None => pstm: PreparedStatement => {}
            case Some(f) => f
          }
          val usql = new SQLUpdate(ctx.statements.head,params,ctx.queryTags)(before)(after)
          Try {
            NamedDB(ctx.dbName) localTx {implicit session =>
              session.fetchSize(ctx.fetchSize)
              ctx.queryTimeout.foreach(session.queryTimeout(_))
              val result = usql.apply()
              Seq(result.toLong).to[C]
            }
          }
    
        }
    
        private def singleTxUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          if (noReturnKey(ctx))
            singleTxUpdateNoReturnKey(ctx)
          else
            singleTxUpdateWithReturnKey(ctx)
        }
    
        private def noReturnKey(ctx: JDBCContext): Boolean = {
          if (ctx.returnGeneratedKey != Nil) {
            val k :: xs = ctx.returnGeneratedKey
             k match {
              case None => true
              case Some(k) => false
            }
          } else true
        }
    
        def noActon: PreparedStatement=>Unit = pstm => {}
    
        def multiTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
            Try {
              NamedDB(ctx.dbName) localTx { implicit session =>
                session.fetchSize(ctx.fetchSize)
                ctx.queryTimeout.foreach(session.queryTimeout(_))
                val keys: Seq[Option[Any]] = ctx.returnGeneratedKey match {
                  case Nil => Seq.fill(ctx.statements.size)(None)
                  case k@_ => k
                }
                val sqlcmd = ctx.statements zip ctx.parameters zip keys
                val results = sqlcmd.map { case ((stm, param), key) =>
                  key match {
                    case None =>
                      new SQLUpdate(stm, param, Nil)(noActon)(noActon).apply().toLong
                    case Some(k) =>
                      new SQLUpdateWithGeneratedKey(stm, param, Nil)(k).apply().toLong
                  }
                }
                results.to[C]
              }
            }
         }

    下面是这个函数的使用示范: 

     val updateSQL = "update members set description = ? where id < ?"
      ctx = JDBCContext('h2)
      try {
         ctx = ctx.setUpdateCommand(JDBCContext.RETURN_GENERATED_KEYVALUE,insertSQL,
           "max", None, "no birth date", dateCreated, None)
           .appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT, updateSQL, "id++", 10)
          .appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT,"delete members where id = 1")
      }
      catch {
        case e: Exception => println(e.getMessage)
      }
      var resultUpdates = jdbcTxUpdates[Vector](ctx)
    
      resultUpdates match {
        case Success(msg) => println(msg)
        case Failure(err) => println(s"${err.getMessage}")
      }

    在这个例子里我们把insert,update和delete混在了一个transaction里。最后,我们再把试验数据,包括blob字段读出来:

      //data model
      case class Member(
                         id: Long,
                         name: String,
                         description: Option[String] = None,
                         birthday: Option[LocalDate] = None,
                         createdAt: DateTime,
                         picture: InputStream)
    
      //data row converter
      val toMember = (rs: WrappedResultSet) => Member(
        id = rs.long("id"),
        name = rs.string("name"),
        description = rs.stringOpt("description"),
        birthday = rs.jodaLocalDateOpt("birthday"),
        createdAt = rs.jodaDateTime("created_at"),
        picture = rs.binaryStream("picture")
      )
    
      ctx = JDBCContext('h2)
      ctx = ctx.setQueryCommand("select * from members").setQueryTimeout(Some(1000))
    
      val vecMember: Vector[Member] = jdbcQueryResult[Vector,Member](ctx,toMember)
    
      val buffer = new Array[Byte](1024)
    
      vecMember.foreach {row =>
        println(s"id: ${row.id} name: ${row.name}")
        println(s"name: ${row.name}")
        if (row.picture == null)
          println("picture empty")
        else {
          val fname = s"/users/tiger/pic${row.id}.png"
          val file = new File(fname)
          val output = new FileOutputStream(file)
    
          println(s"saving picture to $fname")
    
          row.picture.available()
          while (row.picture.read(buffer) > 0) {
            output.write(buffer)
          }
    
          output.close()
    
        }
      }

    下面是本次讨论的示范源代码:

    build.sbt

    name := "learn-scalikeJDBC"
    
    version := "0.1"
    
    scalaVersion := "2.12.4"
    
    // Scala 2.10, 2.11, 2.12
    libraryDependencies ++= Seq(
      "org.scalikejdbc" %% "scalikejdbc"       % "3.1.0",
      "org.scalikejdbc" %% "scalikejdbc-test"   % "3.1.0"   % "test",
      "org.scalikejdbc" %% "scalikejdbc-config"  % "3.1.0",
      "com.h2database"  %  "h2"                % "1.4.196",
      "mysql" % "mysql-connector-java" % "6.0.6",
      "org.postgresql" % "postgresql" % "42.2.0",
      "commons-dbcp" % "commons-dbcp" % "1.4",
      "org.apache.tomcat" % "tomcat-jdbc" % "9.0.2",
      "com.zaxxer" % "HikariCP" % "2.7.4",
      "com.jolbox" % "bonecp" % "0.8.0.RELEASE",
      "com.typesafe.slick" %% "slick" % "3.2.1",
      "ch.qos.logback"  %  "logback-classic"   % "1.2.3"
    )

    resources/application.conf

    # JDBC settings
    test {
      db {
        h2 {
          driver = "org.h2.Driver"
          url = "jdbc:h2:tcp://localhost/~/slickdemo"
          user = ""
          password = ""
          poolInitialSize = 5
          poolMaxSize = 7
          poolConnectionTimeoutMillis = 1000
          poolValidationQuery = "select 1 as one"
          poolFactoryName = "commons-dbcp2"
        }
      }
    
      db.mysql.driver = "com.mysql.cj.jdbc.Driver"
      db.mysql.url = "jdbc:mysql://localhost:3306/testdb"
      db.mysql.user = "root"
      db.mysql.password = "123"
      db.mysql.poolInitialSize = 5
      db.mysql.poolMaxSize = 7
      db.mysql.poolConnectionTimeoutMillis = 1000
      db.mysql.poolValidationQuery = "select 1 as one"
      db.mysql.poolFactoryName = "bonecp"
    
      # scallikejdbc Global settings
      scalikejdbc.global.loggingSQLAndTime.enabled = true
      scalikejdbc.global.loggingSQLAndTime.logLevel = info
      scalikejdbc.global.loggingSQLAndTime.warningEnabled = true
      scalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000
      scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warn
      scalikejdbc.global.loggingSQLAndTime.singleLineMode = false
      scalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = false
      scalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10
    }
    dev {
      db {
        h2 {
          driver = "org.h2.Driver"
          url = "jdbc:h2:tcp://localhost/~/slickdemo"
          user = ""
          password = ""
          poolFactoryName = "hikaricp"
          numThreads = 10
          maxConnections = 12
          minConnections = 4
          keepAliveConnection = true
        }
        mysql {
          driver = "com.mysql.cj.jdbc.Driver"
          url = "jdbc:mysql://localhost:3306/testdb"
          user = "root"
          password = "123"
          poolInitialSize = 5
          poolMaxSize = 7
          poolConnectionTimeoutMillis = 1000
          poolValidationQuery = "select 1 as one"
          poolFactoryName = "bonecp"
    
        }
        postgres {
          driver = "org.postgresql.Driver"
          url = "jdbc:postgresql://localhost:5432/testdb"
          user = "root"
          password = "123"
          poolFactoryName = "hikaricp"
          numThreads = 10
          maxConnections = 12
          minConnections = 4
          keepAliveConnection = true
        }
      }
      # scallikejdbc Global settings
      scalikejdbc.global.loggingSQLAndTime.enabled = true
      scalikejdbc.global.loggingSQLAndTime.logLevel = info
      scalikejdbc.global.loggingSQLAndTime.warningEnabled = true
      scalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000
      scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warn
      scalikejdbc.global.loggingSQLAndTime.singleLineMode = false
      scalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = false
      scalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10
    }

    JDBCEngine.scala

    package jdbccontext
    import java.sql.PreparedStatement
    
    import scala.collection.generic.CanBuildFrom
    import scalikejdbc._
    
    import scala.util._
    import scalikejdbc.TxBoundary.Try._
    
      object JDBCContext {
        type SQLTYPE = Int
        val SQL_SELECT: Int = 0
        val SQL_EXEDDL= 1
        val SQL_UPDATE = 2
        val RETURN_GENERATED_KEYVALUE = true
        val RETURN_UPDATED_COUNT = false
    
      }
    
      case class JDBCContext(
                              dbName: Symbol,
                              statements: Seq[String] = Nil,
                              parameters: Seq[Seq[Any]] = Nil,
                              fetchSize: Int = 100,
                              queryTimeout: Option[Int] = None,
                              queryTags: Seq[String] = Nil,
                              sqlType: JDBCContext.SQLTYPE = JDBCContext.SQL_SELECT,
                              batch: Boolean = false,
                              returnGeneratedKey: Seq[Option[Any]] = Nil,
                              // no return: None, return by index: Some(1), by name: Some("id")
                              preAction: Option[PreparedStatement => Unit] = None,
                              postAction: Option[PreparedStatement => Unit] = None) {
    
        ctx =>
    
        //helper functions
    
        def appendTag(tag: String): JDBCContext = ctx.copy(queryTags = ctx.queryTags :+ tag)
    
        def appendTags(tags: Seq[String]): JDBCContext = ctx.copy(queryTags = ctx.queryTags ++ tags)
    
        def setFetchSize(size: Int): JDBCContext = ctx.copy(fetchSize = size)
    
        def setQueryTimeout(time: Option[Int]): JDBCContext = ctx.copy(queryTimeout = time)
    
        def setPreAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
            !ctx.batch && ctx.statements.size == 1)
            ctx.copy(preAction = action)
          else
            throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
        }
    
        def setPostAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
            !ctx.batch && ctx.statements.size == 1)
            ctx.copy(postAction = action)
          else
            throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
        }
    
        def appendDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_EXEDDL) {
            ctx.copy(
              statements = ctx.statements ++ Seq(_statement),
              parameters = ctx.parameters ++ Seq(Seq(_parameters))
            )
          } else
            throw new IllegalStateException("JDBCContex setting error: option not supported!")
        }
    
        def appendUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
          if (ctx.sqlType == JDBCContext.SQL_UPDATE && !ctx.batch) {
            ctx.copy(
              statements = ctx.statements ++ Seq(_statement),
              parameters = ctx.parameters ++ Seq(_parameters),
              returnGeneratedKey = ctx.returnGeneratedKey ++ (if (_returnGeneratedKey) Seq(Some(1)) else Seq(None))
            )
          } else
            throw new IllegalStateException("JDBCContex setting error: option not supported!")
        }
    
        def appendBatchParameters(_parameters: Any*): JDBCContext = {
          if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
            throw new IllegalStateException("JDBCContex setting error: batch parameters only supported for SQL_UPDATE and batch = true!")
    
          var matchParams = true
          if (ctx.parameters != Nil)
            if (ctx.parameters.head.size != _parameters.size)
              matchParams = false
          if (matchParams) {
            ctx.copy(
              parameters = ctx.parameters ++ Seq(_parameters)
            )
          } else
            throw new IllegalStateException("JDBCContex setting error: batch command parameters not match!")
        }
    
        def setBatchReturnGeneratedKeyOption(returnKey: Boolean): JDBCContext = {
          if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
             throw new IllegalStateException("JDBCContex setting error: only supported in batch update commands!")
          ctx.copy(
            returnGeneratedKey = if (returnKey) Seq(Some(1)) else Nil
          )
        }
    
         def setQueryCommand(_statement: String, _parameters: Any*): JDBCContext = {
            ctx.copy(
              statements = Seq(_statement),
              parameters = Seq(_parameters),
              sqlType = JDBCContext.SQL_SELECT,
              batch = false
            )
          }
    
          def setDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
            ctx.copy(
              statements = Seq(_statement),
              parameters = Seq(_parameters),
              sqlType = JDBCContext.SQL_EXEDDL,
              batch = false
            )
          }
    
          def setUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
            ctx.copy(
              statements = Seq(_statement),
              parameters = Seq(_parameters),
              returnGeneratedKey = if (_returnGeneratedKey) Seq(Some(1)) else Seq(None),
              sqlType = JDBCContext.SQL_UPDATE,
              batch = false
            )
          }
          def setBatchCommand(_statement: String): JDBCContext = {
            ctx.copy (
              statements = Seq(_statement),
              sqlType = JDBCContext.SQL_UPDATE,
              batch = true
            )
          }
      }
    
      object JDBCEngine {
    
        import JDBCContext._
    
        private def noExtractor(message: String): WrappedResultSet => Nothing = { (rs: WrappedResultSet) =>
          throw new IllegalStateException(message)
        }
    
        def jdbcQueryResult[C[_] <: TraversableOnce[_], A](
             ctx: JDBCContext, rowConverter: WrappedResultSet => A)(
              implicit cbf: CanBuildFrom[Nothing, A, C[A]]): C[A] = {
    
          ctx.sqlType match {
            case SQL_SELECT => {
              val params: Seq[Any] = ctx.parameters match {
                case Nil => Nil
                case p@_ => p.head
              }
              val rawSql = new SQLToCollectionImpl[A, NoExtractor](ctx.statements.head, params)(noExtractor(""))
              ctx.queryTimeout.foreach(rawSql.queryTimeout(_))
              ctx.queryTags.foreach(rawSql.tags(_))
              rawSql.fetchSize(ctx.fetchSize)
              implicit val session = NamedAutoSession(ctx.dbName)
              val sql: SQL[A, HasExtractor] = rawSql.map(rowConverter)
              sql.collection.apply[C]()
            }
            case _ => throw new IllegalStateException("JDBCContex setting error: sqlType must be 'SQL_SELECT'!")
          }
        }
    
        def jdbcExcuteDDL(ctx: JDBCContext): Try[String] = {
           if (ctx.sqlType != SQL_EXEDDL) {
            Failure(new IllegalStateException("JDBCContex setting error: sqlType must be 'SQL_EXEDDL'!"))
          }
          else {
            NamedDB(ctx.dbName) localTx { implicit session =>
              Try {
                    ctx.statements.foreach { stm =>
                      val ddl = new SQLExecution(statement = stm, parameters = Nil)(
                        before = WrappedResultSet => {})(
                        after = WrappedResultSet => {})
    
                      ddl.apply()
                  }
                "SQL_EXEDDL executed succesfully."
              }
            }
          }
        }
    
        def jdbcBatchUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          if (ctx.statements == Nil)
            throw new IllegalStateException("JDBCContex setting error: statements empty!")
          if (ctx.sqlType != SQL_UPDATE) {
            Failure(new IllegalStateException("JDBCContex setting error: sqlType must be 'SQL_UPDATE'!"))
          }
          else {
            if (ctx.batch) {
              if (noReturnKey(ctx)) {
                val usql = SQL(ctx.statements.head)
                  .tags(ctx.queryTags: _*)
                  .batch(ctx.parameters: _*)
                Try {
                  NamedDB(ctx.dbName) localTx { implicit session =>
                    ctx.queryTimeout.foreach(session.queryTimeout(_))
                    usql.apply[Seq]()
                    Seq.empty[Long].to[C]
                  }
                }
              } else {
                val usql = new SQLBatchWithGeneratedKey(ctx.statements.head, ctx.parameters, ctx.queryTags)(None)
                Try {
                  NamedDB(ctx.dbName) localTx { implicit session =>
                    ctx.queryTimeout.foreach(session.queryTimeout(_))
                    usql.apply[C]()
                  }
                }
              }
    
            } else {
              Failure(new IllegalStateException("JDBCContex setting error: must set batch = true !"))
            }
          }
        }
         private def singleTxUpdateWithReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
           implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
           val Some(key) :: xs = ctx.returnGeneratedKey
           val params: Seq[Any] = ctx.parameters match {
             case Nil => Nil
             case p@_ => p.head
           }
           val usql = new SQLUpdateWithGeneratedKey(ctx.statements.head, params, ctx.queryTags)(key)
           Try {
             NamedDB(ctx.dbName) localTx { implicit session =>
               session.fetchSize(ctx.fetchSize)
               ctx.queryTimeout.foreach(session.queryTimeout(_))
               val result = usql.apply()
               Seq(result).to[C]
             }
           }
         }
    
          private def singleTxUpdateNoReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
            implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          val params: Seq[Any] = ctx.parameters match {
            case Nil => Nil
            case p@_ => p.head
          }
          val before = ctx.preAction match {
            case None => pstm: PreparedStatement => {}
            case Some(f) => f
          }
          val after = ctx.postAction match {
            case None => pstm: PreparedStatement => {}
            case Some(f) => f
          }
          val usql = new SQLUpdate(ctx.statements.head,params,ctx.queryTags)(before)(after)
          Try {
            NamedDB(ctx.dbName) localTx {implicit session =>
              session.fetchSize(ctx.fetchSize)
              ctx.queryTimeout.foreach(session.queryTimeout(_))
              val result = usql.apply()
              Seq(result.toLong).to[C]
            }
          }
    
        }
    
        private def singleTxUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          if (noReturnKey(ctx))
            singleTxUpdateNoReturnKey(ctx)
          else
            singleTxUpdateWithReturnKey(ctx)
        }
    
        private def noReturnKey(ctx: JDBCContext): Boolean = {
          if (ctx.returnGeneratedKey != Nil) {
            val k :: xs = ctx.returnGeneratedKey
             k match {
              case None => true
              case Some(k) => false
            }
          } else true
        }
    
        def noActon: PreparedStatement=>Unit = pstm => {}
    
        def multiTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
            Try {
              NamedDB(ctx.dbName) localTx { implicit session =>
                session.fetchSize(ctx.fetchSize)
                ctx.queryTimeout.foreach(session.queryTimeout(_))
                val keys: Seq[Option[Any]] = ctx.returnGeneratedKey match {
                  case Nil => Seq.fill(ctx.statements.size)(None)
                  case k@_ => k
                }
                val sqlcmd = ctx.statements zip ctx.parameters zip keys
                val results = sqlcmd.map { case ((stm, param), key) =>
                  key match {
                    case None =>
                      new SQLUpdate(stm, param, Nil)(noActon)(noActon).apply().toLong
                    case Some(k) =>
                      new SQLUpdateWithGeneratedKey(stm, param, Nil)(k).apply().toLong
                  }
                }
                results.to[C]
              }
            }
         }
    
    
        def jdbcTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
          implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
          if (ctx.statements == Nil)
            throw new IllegalStateException("JDBCContex setting error: statements empty!")
          if (ctx.sqlType != SQL_UPDATE) {
            Failure(new IllegalStateException("JDBCContex setting error: sqlType must be 'SQL_UPDATE'!"))
          }
          else {
            if (!ctx.batch) {
              if (ctx.statements.size == 1)
                singleTxUpdate(ctx)
              else
                multiTxUpdates(ctx)
            } else
              Failure(new IllegalStateException("JDBCContex setting error: must set batch = false !"))
    
          }
        }
    
      }

    JDBCEngineDemo.scala

    import java.io.File
    import java.io.FileOutputStream
    import java.io.InputStream
    import jdbccontext._
    import configdbs._
    import org.joda.time._
    import scala.util._
    import JDBCEngine._
    
    import scalikejdbc._
    object CrudDemo extends App {
      ConfigDBsWithEnv("dev").setup('h2)
      ConfigDBsWithEnv("dev").loadGlobalSettings()
    
      val dropSQL: String ="""
          drop table members
        """
    
      val createSQL: String ="""
        create table members (
          id serial not null primary key,
          name varchar(30) not null,
          description varchar(1000),
          birthday date,
          created_at timestamp not null,
          picture blob
        )"""
    
      var ctx = JDBCContext('h2)
        try {
          ctx = ctx.setDDLCommand(dropSQL)
            .appendDDLCommand(createSQL)
        }
        catch {
           case e: Exception => println(e.getMessage)
        }
    
      val resultCreateTable = jdbcExcuteDDL(ctx)
    
      resultCreateTable match {
        case Success(msg) => println(msg)
        case Failure(err) => println(s"${err.getMessage}")
      }
    
      val insertSQL = "insert into members(name,birthday,description,created_at,picture) values (?, ?, ?, ?, ?)"
      val dateCreated = DateTime.now
    
      import java.io.FileInputStream
    
      val picfile = new File("/users/tiger/Nobody.png")
      val fis = new FileInputStream(picfile)
    
      ctx = JDBCContext('h2)
      try {
        ctx = ctx.setBatchCommand(insertSQL).appendBatchParameters(
          "John",new LocalDate("2008-03-01"),"youngest user",dateCreated,None).appendBatchParameters(
          "peter", None, "no birth date", dateCreated, fis)
          .appendBatchParameters(
            "susan", None, "no birth date", dateCreated, None)
          .setBatchReturnGeneratedKeyOption(JDBCContext.RETURN_GENERATED_KEYVALUE)
      }
      catch {
        case e: Exception => println(e.getMessage)
      }
    
      var resultInserts = jdbcBatchUpdate(ctx)
    
      resultInserts match {
        case Success(msg) => println(msg)
        case Failure(err) => println(s"${err.getMessage}")
      }
    
    
      val updateSQL = "update members set description = ? where id < ?"
      ctx = JDBCContext('h2)
      try {
         ctx = ctx.setUpdateCommand(JDBCContext.RETURN_GENERATED_KEYVALUE,insertSQL,
           "max", None, "no birth date", dateCreated, None)
           .appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT, updateSQL, "id++", 10)
          .appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT,"delete members where id = 1")
      }
      catch {
        case e: Exception => println(e.getMessage)
      }
      var resultUpdates = jdbcTxUpdates[Vector](ctx)
    
      resultUpdates match {
        case Success(msg) => println(msg)
        case Failure(err) => println(s"${err.getMessage}")
      }
    
    
      //data model
      case class Member(
                         id: Long,
                         name: String,
                         description: Option[String] = None,
                         birthday: Option[LocalDate] = None,
                         createdAt: DateTime,
                         picture: InputStream)
    
      //data row converter
      val toMember = (rs: WrappedResultSet) => Member(
        id = rs.long("id"),
        name = rs.string("name"),
        description = rs.stringOpt("description"),
        birthday = rs.jodaLocalDateOpt("birthday"),
        createdAt = rs.jodaDateTime("created_at"),
        picture = rs.binaryStream("picture")
      )
    
      ctx = JDBCContext('h2)
      ctx = ctx.setQueryCommand("select * from members").setQueryTimeout(Some(1000))
    
      val vecMember: Vector[Member] = jdbcQueryResult[Vector,Member](ctx,toMember)
    
      val buffer = new Array[Byte](1024)
    
      vecMember.foreach {row =>
        println(s"id: ${row.id} name: ${row.name}")
        println(s"name: ${row.name}")
        if (row.picture == null)
          println("picture empty")
        else {
          val fname = s"/users/tiger/pic${row.id}.png"
          val file = new File(fname)
          val output = new FileOutputStream(file)
    
          println(s"saving picture to $fname")
    
          row.picture.available()
          while (row.picture.read(buffer) > 0) {
            output.write(buffer)
          }
    
          output.close()
    
        }
      }
    
    }

     

     

     

     

     

  • 相关阅读:
    获得 Web Service 方法的描述信息
    make menuconfig 报错
    汇编调用c函数为什么要设置栈
    UBoot Makefile文件分析
    UBoot启动过程完全分析(转)
    (转)在fedora12下用crosstoolng建立armlinux交叉编译环境
    UBoot编译过程完全分析(转)
    雷军:给互联网创业者的“七字”建议
    uboot根目录下makefile
    Redhat 5 配置Samba服务器
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/8431245.html
Copyright © 2020-2023  润新知