• FunDA(7)- Reactive Streams to fs2 Pull Streams


        Reactive-Stream不只是简单的push-model-stream, 它还带有“拖式”(pull-model)性质。这是因为在Iteratee模式里虽然理论上由Enumerator负责主动推送数据,实现了push-model功能。但实际上Iteratee也会根据自身情况,通过提供callback函数通知Enumerator可以开始推送数据,这从某种程度上也算是一种pull-model。换句话讲Reactive-Streams是通过push-pull-model来实现上下游Enumerator和Iteratee之间互动的。我们先看个简单的Iteratee例子:

    def showElements: Iteratee[Int,Unit] = Cont {
      case Input.El(e) =>
         println(s"EL($e)")
         showElements
      case Input.Empty => showElements
      case Input.EOF =>
         println("EOF")
         Done((),Input.EOF)
    }                                                 //> showElements: => play.api.libs.iteratee.Iteratee[Int,Unit]
    val enumNumbers = Enumerator(1,2,3,4,5)           //> enumNumbers  : play.api.libs.iteratee.Enumerator[Int] = play.api.libs.iteratee.Enumerator$$anon$19@47f6473
    
    enumNumbers |>> showElements                      //> EL(1)
                                                      //| EL(2)
                                                      //| EL(3)
                                                      //| EL(4)
                                                      //| EL(5)
                                                      //| res0: scala.concurrent.Future[play.api.libs.iteratee.Iteratee[Int,Unit]] = Success(Cont(<function1>))

    我们看到:enumNumbers |>> showElements立刻启动了运算。但并没有实际完成数据发送,因为showElements并没有收到Input.EOF。首先,我们必须用Iteratee.run来完成运算:

    val it = Iteratee.flatten(enum |>> consumeAll).run//> El(1)
                                                      //| El(2)
                                                      //| El(3)
                                                      //| El(4)
                                                      //| El(5)
                                                      //| El(6)
                                                      //| El(7)
                                                      //| El(8)
                                                      //| EOF
                                                      //| it  : scala.concurrent.Future[Int] = Success(99)

    这个run函数是这样定义的:

    /**
       * Extracts the computed result of the Iteratee pushing an Input.EOF if necessary
       * Extracts the computed result of the Iteratee, pushing an Input.EOF first
       * if the Iteratee is in the [[play.api.libs.iteratee.Cont]] state.
       * In case of error, an exception may be thrown synchronously or may
       * be used to complete the returned Promise; this indeterminate behavior
       * is inherited from fold().
       *
       *  @return a [[scala.concurrent.Future]] of the eventually computed result
       */
      def run: Future[A] = fold({
        case Step.Done(a, _) => Future.successful(a)
        case Step.Cont(k) => k(Input.EOF).fold({
          case Step.Done(a1, _) => Future.successful(a1)
          case Step.Cont(_) => sys.error("diverging iteratee after Input.EOF")
          case Step.Error(msg, e) => sys.error(msg)
        })(dec)
        case Step.Error(msg, e) => sys.error(msg)
      })(dec)

    再一个问题是:enumNumbers |>> showElements是个封闭的运算,我们无法逐部分截取数据流,只能取得整个运算结果。也就是说如果我们希望把一个Enumerator产生的数据引导到fs2 Stream的话,只能在所有数据都读入内存后才能实现了。这样就违背了使用Reactive-Streams的意愿。那我们应该怎么办?一个可行的方法是使用一个存储数据结构,用两个线程,一个线程里Iteratee把当前数据存入数据结构,另一个线程里fs2把数据取出来。fs2.async.mutable包提供了个Queue类型,我们可以用这个Queue结构来作为Iteratee与fs2之间的管道:Iteratee从一头把数据压进去(enqueue),fs2从另一头把数据取出来(dequeue)。

    我们先设计enqueue部分,这部分是在Iteratee里进行的:

    def enqueueTofs2(q: async.mutable.Queue[Task,Option[Int]]): Iteratee[Int,Unit] = Cont {
       case Input.EOF =>
           q.enqueue1(None).unsafeRun
           Done((),Input.EOF)
       case Input.Empty => enqueueTofs2(q)
       case Input.El(e) =>
           q.enqueue1(Some(e)).unsafeRun
           enqueueTofs2(q)
    }    //> enqueueTofs2: (q: fs2.async.mutable.Queue[fs2.Task,Option[Int]])play.api.libs.iteratee.Iteratee[Int,Unit]

    先分析一下这个Iteratee:我们直接把enqueueTofs2放入Cont状态,也就是等待接受数据状态。当收到数据时运行q.enqueue1把数据塞入q,然后不断循环运行至收到Input.EOF。注意:q.enqueue1(Some(e)).unsafeRun是个同步运算,在未成功完成数据enqueue1的情况下会一直占用线程。所以,q另一端的dequeue部分必须是在另一个线程里运行,否则会造成整个程序的死锁。fs2的Queue类型款式是:Queue[F,A],所以我们必须用Stream.eval来对这个Queue进行函数式的操作:

    val fs2Stream: Stream[Task,Int] = Stream.eval(async.boundedQueue[Task,Option[Int]](2)).flatMap { q =>
        //run Enumerator-Iteratee and enqueue data in thread 1
        //dequeue data and en-stream in thread 2(current thread)
      }

    因为Stream.eval运算结果是Stream[Task,Int],所以我们可以得出这个flatMap内的函数款式 Queue[Task,Option[Int]] => Stream[Task,Int]。下面我们先考虑如何实现数据enqueue部分:这部分是通过Iteratee的运算过程产生的。我们提到过这部分必须在另一个线程里运行,所以可以用Task来选定另一线程如下:

        Task { Iteratee.flatten(enumerator |>> pushData(q)).run }.unsafeRunAsyncFuture()

    现在这个Task就在后面另一个线程里自己去运算了。但它的运行进展则会依赖于另一个线程中dequeue数据的进展。我们先看看fs2提供的两个函数款式:

    /** Repeatedly calls `dequeue1` forever. */
      def dequeue: Stream[F, A] = Stream.bracket(cancellableDequeue1)(d => Stream.eval(d._1), d => d._2).repeat
    
    /**
       * Halts the input stream at the first `None`.
       *
       * @example {{{
       * scala> Stream[Pure, Option[Int]](Some(1), Some(2), None, Some(3), None).unNoneTerminate.toList
       * res0: List[Int] = List(1, 2)
       * }}}
       */
      def unNoneTerminate[F[_],I]: Pipe[F,Option[I],I] =
        _ repeatPull { _.receive {
          case (hd, tl) =>
            val out = Chunk.indexedSeq(hd.toVector.takeWhile { _.isDefined }.collect { case Some(i) => i })
            if (out.size == hd.size) Pull.output(out) as tl
            else if (out.isEmpty) Pull.done
            else Pull.output(out) >> Pull.done
        }}

    刚好,dequeue产生Stream[F,A]。而unNoneTerminate可以根据Stream(None)来终止运算。现在我们可以把这个Reactive-Streams到fs2-pull-streams转换过程这样来定义:

    implicit val strat = Strategy.fromFixedDaemonPool(4)
                                                      //> strat  : fs2.Strategy = Strategy
    val fs2Stream: Stream[Task,Int] = Stream.eval(async.boundedQueue[Task,Option[Int]](2)).flatMap { q =>
      Task(Iteratee.flatten(enumNumbers |>> enqueueTofs2(q)).run).unsafeRunAsyncFuture
      pipe.unNoneTerminate(q.dequeue)
    }   //> fs2Stream  : fs2.Stream[fs2.Task,Int] = attemptEval(Task).flatMap(<function1>).flatMap(<function1>)

    现在这个stream应该已经变成fs2.Stream[Task,Int]了。我们可以用前面的log函数来试运行一下:

    def log[A](prompt: String): Pipe[Task,A,A] =
        _.evalMap {row => Task.delay{ println(s"$prompt> $row"); row }}
                                                      //> log: [A](prompt: String)fs2.Pipe[fs2.Task,A,A]
        
    fs2Stream.through(log("")).run.unsafeRun          //> > 1
                                                      //| > 2
                                                      //| > 3
                                                      //| > 4
                                                      //| > 5

    我们成功的把Iteratee的Reactive-Stream转化成fs2的Pull-Model-Stream。

    下面是这次讨论的源代码:

    import play.api.libs.iteratee._
    import scala.concurrent._
    import scala.concurrent.duration._
    import scala.concurrent.ExecutionContext.Implicits.global
    import scala.collection.mutable._
    import fs2._
    object iteratees {
    def showElements: Iteratee[Int,Unit] = Cont {
      case Input.El(e) =>
         println(s"EL($e)")
         showElements
      case Input.Empty => showElements
      case Input.EOF =>
         println("EOF")
         Done((),Input.EOF)
    }
    val enumNumbers = Enumerator(1,2,3,4,5)
    
    enumNumbers |>> showElements
    
    Iteratee.flatten(enumNumbers |>> showElements).run
    
    
    def enqueueTofs2(q: async.mutable.Queue[Task,Option[Int]]): Iteratee[Int,Unit] = Cont {
       case Input.EOF =>
           q.enqueue1(None).unsafeRun
           Done((),Input.EOF)
       case Input.Empty => enqueueTofs2(q)
       case Input.El(e) =>
           q.enqueue1(Some(e)).unsafeRun
           enqueueTofs2(q)
    }
    implicit val strat = Strategy.fromFixedDaemonPool(4)
    val fs2Stream: Stream[Task,Int] = Stream.eval(async.boundedQueue[Task,Option[Int]](2)).flatMap { q =>
      Task(Iteratee.flatten(enumNumbers |>> enqueueTofs2(q)).run).unsafeRunAsyncFuture
      pipe.unNoneTerminate(q.dequeue)
    }
    
    def log[A](prompt: String): Pipe[Task,A,A] =
        _.evalMap {row => Task.delay{ println(s"$prompt> $row"); row }}
        
    fs2Stream.through(log("")).run.unsafeRun
     
    }

     

     

     

  • 相关阅读:
    初级Linux学习指南
    2016/09/29 SQL中的join
    2016/09/27 Hadoop Yarn
    2016/06/27 HDFS概述
    2016/09/26 电能和电功率
    【转】2016/09/22 MapReduce初级案例
    2016/09/22 mapreduce
    2016/09/21 java关键字static
    2016/09/21 Java关键字final
    2016/09/21 java split用法
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/6370363.html
Copyright © 2020-2023  润新知