• Scalaz(47)- scalaz-stream: 深入了解-Source


       scalaz-stream库的主要设计目标是实现函数式的I/O编程(functional I/O)。这样用户就能使用功能单一的基础I/O函数组合成为功能完整的I/O程序。还有一个目标就是保证资源的安全使用(resource safety):使用scalaz-stream编写的I/O程序能确保资源的安全使用,特别是在完成一项I/O任务后自动释放所有占用的资源包括file handle、memory等等。我们在上一篇的讨论里笼统地解释了一下scalaz-stream核心类型Process的基本情况,不过大部分时间都用在了介绍Process1这个通道类型。在这篇讨论里我们会从实际应用的角度来介绍整个scalaz-stream链条的设计原理及应用目的。我们提到过Process具有Emit/Await/Halt三个状态,而Append是一个链接stream节点的重要类型。先看看这几个类型在scalaz-stream里的定义:

    case class Emit[+O](seq: Seq[O]) extends HaltEmitOrAwait[Nothing, O] with EmitOrAwait[Nothing, O]
    
    case class Await[+F[_], A, +O](
        req: F[A]
        , rcv: (EarlyCause / A) => Trampoline[Process[F, O]] @uncheckedVariance
        , preempt : A => Trampoline[Process[F,Nothing]] @uncheckedVariance = (_:A) => Trampoline.delay(halt:Process[F,Nothing])
        ) extends HaltEmitOrAwait[F, O] with EmitOrAwait[F, O] 
    
    case class Halt(cause: Cause) extends HaltEmitOrAwait[Nothing, Nothing] with HaltOrStep[Nothing, Nothing]
    
    case class Append[+F[_], +O](
        head: HaltEmitOrAwait[F, O]
        , stack: Vector[Cause => Trampoline[Process[F, O]]] @uncheckedVariance
        ) extends Process[F, O] 

    我们看到Process[F,O]被包嵌在Trampoline类型里,所以Process是通过Trampoline来实现函数结构化的,可以有效解决大量stream运算堆栈溢出问题(StackOverflowError)。撇开Trampoline等复杂的语法,以上类型可以简化成以下理论结构:

     1 rait Process[+F[_],+O]
     2 case object Cause
     3 
     4 case class Emit[O](out: O) extends Process[Nothing, O] 
     5 
     6 case class Halt(cause: Cause) extends Process[Nothing,Nothing]
     7 
     8 case class Await[+F[_],E,+O](
     9   req: F[E],
    10   rcv: E => Process[F,O],
    11   preempt: E => Process[F,Nothing] = Halt) extends Process[F,O]
    12 
    13 case class Append[+F[_],+O](
    14   head: Process[F,O],
    15   stack: Vector[Cause => Process[F,O]]) extends Process[F,O]  

    我们来说明一下:

    Process[F[_],O]:从它的类型可以推断出scalaz-stream可以在输出O类型元素的过程中进行可能含副作用的F类型运算。

    Emit[O](out: O):发送一个O类型元素;不可能进行任何附加运算

    Halt(cause: Cause):停止发送;cause是停止的原因:End-完成发送,Err-出错终止,Kill-强行终止

    Await[+F[_],E,+O]:这个是运算流的核心Process状态。先进行F运算req,得出结果E后输入函数rcv转换到下一个Process状态,完成后执行preempt这个事后清理函数。这不就是个flatMap函数结构版嘛。值得注意的是E类型是个内部类型,由F运算产生后输入rcv后就不再引用了。我们可以在preepmt函数里进行资源释放。如果我们需要构建一个运算流,看来就只有使用这个Await类型了

    Append[+F[_],+O]:Append是一个Process[F,O]链接类型。首先它不但担负了元素O的传送,更重要的是它还可以把上一节点的F运算传到下一个节点。这样才能在下面节点时运行对上一个节点的事后处置函数(finalizer)。Append可以把多个节点结成一个大节点:head是第一个节点,stack是一串函数,每个函数接受上一个节点完成状态后运算出下一个节点状态

    一个完整的scalaz-stream由三个类型的节点组成Source(源点)/Transducer(传换点)/Sink(终点)。节点间通过Await或者Append来链接。我们再来看看Source/Transducer/Sink的类型款式:

    上游:Source       >>> Process0[O]   >>> Process[F[_],O]

    中游:Transduce    >>> Process1[I,O] 

    下游:Sink/Channel >>> Process[F[_],O => F[Unit]], Channel >>> Process[F[_],I => F[O]]

    我们可以用一个文件处理流程来描述完整scalaz-stream链条的作用:

    Process[F[_],O],用F[O]方式读取文件中的O值,这时F是有副作用的 

    >>> Process[I,O],I代表从文件中读取的原始数据,O代表经过筛选、处理产生的输出数据

    >>> O => F[Unit]是一个不返回结果的函数,代表对输入的O类型数据进行F运算,如把O类型数据存写入一个文件

    />> I => F[O]是个返回结果的函数,对输入I进行F运算后返回O,如把一条记录写入数据库后返回写入状态

    以上流程简单描述:从文件中读出数据->加工处理读出数据->写入另一个文件。虽然从描述上看起来很简单,但我们的目的是资源安全使用:无论在任何终止情况下:正常读写、中途强行停止、出错终止,scalaz-stream都会主动关闭开启的文件、停止使用的线程、释放占用的内存等其它资源。这样看来到不是那么简单了。我们先试着分析Source/Transducer/Sink这几种类型的作用:

    1 import Process._
    2 emit(0)                        //> res0: scalaz.stream.Process0[Int] = Emit(Vector(0))
    3 emitAll(Seq(1,2,3))            //> res1: scalaz.stream.Process0[Int] = Emit(List(1, 2, 3))
    4 Process(1,2,3)                 //> res2: scalaz.stream.Process0[Int] = Emit(WrappedArray(1, 2, 3))
    5 Process()                      //> res3: scalaz.stream.Process0[Nothing] = Emit(List())

    以上都是Process0的构建方式,也算是数据源。但它们只是代表了内存中的一串值,对我们来说没什么意义,因为我们希望从外设获取这些值,比如从文件或者数据库里读取数据,也就是说需要F运算效果。Process0[O] >>> Process[Nothing,O],而我们需要的是Process[F,O]。那么我们这样写如何呢?

    1 val p: Process[Task,Int] = emitAll(Seq(1,2,3))    
    2    //> p  : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Emit(List(1, 2, 3))
    3 
    4 emitAll(Seq(1,2,3)).toSource
    5    //> res4: scalaz.stream.Process[scalaz.concurrent.Task,Int] = Emit(List(1, 2, 3))
    6                                                   

    类型倒是匹配了,但表达式Emit(...)里没有任何Task的影子,这个无法满足我们对Source的需要。看来只有以下这种方式了:

    1 await(Task.delay{3})(emit)                        
    2 //> res5: scalaz.stream.Process[scalaz.concurrent.Task,Int] = Await(scalaz.concurrent.Task@57855c9a,<function1>,<function1>)
    3 eval(Task.delay{3})                               
    4 //> res6: scalaz.stream.Process[scalaz.concurrent.Task,Int] = Await(scalaz.concurrent.Task@63e2203c,<function1>,<function1>)

    现在不但类型匹配,而且表达式里还包含了Task运算。我们通过Task.delay可以进行文件读取等带有副作用的运算,这是因为Await将会运行req:F[E] >>> Task[Int]。这正是我们需要的Source。那我们能不能用这个Source来发出一串数据呢?

     1 def emitSeq[A](xa: Seq[A]):Process[Task,A] =
     2   xa match {
     3     case h :: t => await(Task.delay {h})(emit) ++ emitSeq(t)
     4     case Nil => halt
     5   }                                     //> emitSeq: [A](xa: Seq[A])scalaz.stream.Process[scalaz.concurrent.Task,A]
     6 val es1 = emitSeq(Seq(1,2,3))           //> es1  : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Append(Await(scalaz.concurrent.Task@2d6eabae,<function1>,<function1>),Vector(<function1>))
     7 val es2 = emitSeq(Seq("a","b","c"))     //> es2  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Append(Await(
     8 scalaz.concurrent.Task@4e7dc304,<function1>,<function1>),Vector(<function1>))
     9 es1.runLog.run                          //> res7: Vector[Int] = Vector(1, 2, 3)
    10 es2.runLog.run                          //> res8: Vector[String] = Vector(a, b, c)

    以上示范中我们用await运算了Task,然后返回了Process[Task,?],一个可能带副作用运算的Source。实际上我们在很多情况下都需要从外部的源头用Task来获取一些数据,通常这些数据源都对数据获取进行了异步(asynchronous)运算处理,然后通过callback方式来提供这些数据。我们可以用Task.async函数来把这些callback函数转变成Task,下一步我们只需要用Process.eval或者await就可以把这个Task升格成Process[Task,?]。我们先看个简单的例子:假如我们用scala.concurrent.Future来进行异步数据读取,可以这样把Future转换成Process:

     1 def getData(dbName: String): Task[String] = Task.async { cb =>
     2    import scala.concurrent._
     3    import scala.concurrent.ExecutionContext.Implicits.global
     4    import scala.util.{Success,Failure}
     5    Future { s"got data from $dbName" }.onComplete {
     6      case Success(a) => cb(a.right)
     7      case Failure(e) => cb(e.left)
     8    }
     9 }                                        //> getData: (dbName: String)scalaz.concurrent.Task[String]
    10 val procGetData = eval(getData("MySQL")) //> procGetData  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Await(scalaz.concurrent.Task@dd3b207,<function1>,<function1>)
    11 procGetData.runLog.run                   //> res9: Vector[String] = Vector(got data from MySQL)

    我们也可以把java的callback转变成Task:

     1   import com.ning.http.client._
     2   val asyncHttpClient = new AsyncHttpClient()     //> asyncHttpClient  : com.ning.http.client.AsyncHttpClient = com.ning.http.client.AsyncHttpClient@245b4bdc
     3   def get(s: String): Task[Response] = Task.async[Response] { callback =>
     4     asyncHttpClient.prepareGet(s).execute(
     5       new AsyncCompletionHandler[Unit] {
     6         def onCompleted(r: Response): Unit = callback(r.right)
     7 
     8         def onError(e: Throwable): Unit = callback(e.left)
     9       }
    10     )
    11   }                 //> get: (s: String)scalaz.concurrent.Task[com.ning.http.client.Response]
    12   val prcGet = Process.eval(get("http://sina.com"))
    13                     //> prcGet  : scalaz.stream.Process[scalaz.concurrent.Task,com.ning.http.client.Response] = Await(scalaz.concurrent.Task@222545dc,<function1>,<function1>)
    14   prcGet.run.run    //> 12:25:27.852 [New I/O worker #1] DEBUG c.n.h.c.p.n.r.NettyConnectListener -Request using non cached Channel '[id: 0x23fa1307, /192.168.200.3:50569 =>sina.com/66.102.251.33:80]':

    如果直接按照scalaz Task callback的类型款式 def async(callback:(Throwable / Unit) => Unit):

     1   def read(callback: (Throwable / Array[Byte]) => Unit): Unit = ???
     2                                  //> read: (callback: scalaz./[Throwable,Array[Byte]] => Unit)Unit
     3   val t: Task[Array[Byte]] = Task.async(read)     //> t  : scalaz.concurrent.Task[Array[Byte]] = scalaz.concurrent.Task@1a677343
     4   val t2: Task[Array[Byte]] = for {
     5     bytes <- t
     6     moarBytes <- t
     7   } yield (bytes ++ moarBytes)          //> t2  : scalaz.concurrent.Task[Array[Byte]] = scalaz.concurrent.Task@15de0b3c
     8   val prct2 = Process.eval(t2)          //> prct2  : scalaz.stream.Process[scalaz.concurrent.Task,Array[Byte]] = Await(scalaz.concurrent.Task@15de0b3c,<function1>,<function1>)
     9 
    10   def asyncRead(succ: Array[Byte] => Unit, fail: Throwable => Unit): Unit = ???
    11                           //> asyncRead: (succ: Array[Byte] => Unit, fail: Throwable => Unit)Unit
    12   val t3: Task[Array[Byte]] = Task.async { callback =>
    13      asyncRead(b => callback(b.right), err => callback(err.left))
    14   }                      //> t3  : scalaz.concurrent.Task[Array[Byte]] = scalaz.concurrent.Task@489115ef
    15   val t4: Task[Array[Byte]] = t3.flatMap(b => Task(b))
    16                          //> t4  : scalaz.concurrent.Task[Array[Byte]] = scalaz.concurrent.Task@3857f613
    17   val prct4 = Process.eval(t4)      //> prct4  : scalaz.stream.Process[scalaz.concurrent.Task,Array[Byte]] = Await(scalaz.concurrent.Task@3857f613,<function1>,<function1>)

    我们也可以用timer来产生Process[Task,A]:

    1   import scala.concurrent.duration._
    2   implicit val scheduler = java.util.concurrent.Executors.newScheduledThreadPool(3)
    3                   //> scheduler  : java.util.concurrent.ScheduledExecutorService = java.util.concurrent.ScheduledThreadPoolExecutor@516be40f[Running, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]
    4   val fizz = time.awakeEvery(3.seconds).map(_ => "fizz")
    5                   //> fizz  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Await(scalaz.concurrent.Task@5762806e,<function1>,<function1>)
    6   val fizz3 = fizz.take(3)   //> fizz3  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Append(Halt(End),Vector(<function1>))
    7   fizz3.runLog.run           //> res9: Vector[String] = Vector(fizz, fizz, fizz)

    Queue、Top和Signal都可以作为带副作用数据源的构建器。我们先看看Queue是如何产生数据源的:

     1   type BigStringResult = String
     2   val qJobResult = async.unboundedQueue[BigStringResult]
     3                          //> qJobResult  : scalaz.stream.async.mutable.Queue[demo.ws.blogStream.BigStringResult] = scalaz.stream.async.mutable.Queue$$anon$1@25d250c6
     4   def longGet(jobnum: Int): BigStringResult = {
     5     Thread.sleep(2000)
     6     s"Some large data sets from job#${jobnum}"
     7   }                      //> longGet: (jobnum: Int)demo.ws.blogStream.BigStringResult
     8       
     9 //  multi-tasking
    10     val start = System.currentTimeMillis()        //> start  : Long = 1468556250797
    11     Task.fork(qJobResult.enqueueOne(longGet(1))).unsafePerformAsync{case _ => ()}
    12     Task.fork(qJobResult.enqueueOne(longGet(2))).unsafePerformAsync{case _ => ()}
    13     Task.fork(qJobResult.enqueueOne(longGet(3))).unsafePerformAsync{case _ => ()}
    14     val timemill = System.currentTimeMillis() - start
    15                                                   //> timemill  : Long = 17
    16     Thread.sleep(3000)
    17     qJobResult.close.run
    18  val bigData = {
    19  //multi-tasking
    20     val j1 = qJobResult.dequeue
    21     val j2 = qJobResult.dequeue
    22     val j3 = qJobResult.dequeue
    23     for {
    24      r1 <- j1
    25      r2 <- j2
    26      r3 <- j3
    27     } yield r1 + ","+ r2 + "," + r3
    28   }                       //> bigData  : scalaz.stream.Process[[x]scalaz.concurrent.Task[x],String] = Await(scalaz.concurrent.Task@778d1062,<function1>,<function1>)
    29   
    30   bigData.runLog.run      //> res9: Vector[String] = Vector(Some large data sets from job#2,Some large data sets from job#3,Some large data sets from job#1)

    再看看Topic示范:

     1 import scala.concurrent._
     2   import scala.concurrent.duration._
     3   import scalaz.stream.async.mutable._
     4   import scala.concurrent.ExecutionContext.Implicits.global
     5   val sharedData: Topic[BigStringResult] = async.topic()
     6        //> sharedData  : scalaz.stream.async.mutable.Topic[demo.ws.blogStream.BigStringResult] = scalaz.stream.async.package$$anon$1@797badd3
     7   val subscriber = sharedData.subscribe.runLog    //> subscriber  : scalaz.concurrent.Task[Vector[demo.ws.blogStream.BigStringResult]] = scalaz.concurrent.Task@226a82c4
     8   val otherThread = future {
     9     subscriber.run // Added this here - now subscriber is really attached to the topic
    10   }                //> otherThread  : scala.concurrent.Future[Vector[demo.ws.blogStream.BigStringResult]] = List()
    11   // Need to give subscriber some time to start up.
    12   // I doubt you'd do this in actual code.
    13 
    14   // topics seem more useful for hooking up things like
    15   // sensors that produce a continual stream of data,
    16 
    17   // and where individual values can be dropped on
    18   // floor.
    19   Thread.sleep(100)
    20 
    21   sharedData.publishOne(longGet(1)).run // don't just call publishOne; need to run the resulting task
    22   sharedData.close.run // Don't just call close; need to run the resulting task
    23 
    24   // Need to wait for the output
    25   val result = Await.result(otherThread, Duration.Inf)
    26        //> result  : Vector[demo.ws.blogStream.BigStringResult] = Vector(Some large data sets from job#1)

    以上对可能带有副作用的Source的各种产生方法提供了解释和示范。scalaz-stream的其他类型节点将在下面的讨论中深入介绍。

     

     

  • 相关阅读:
    Docker 私有仓库高级配置
    Docker 私有仓库
    Docker Hub
    访问 Docker 仓库
    Docker 删除容器
    392. 判断子序列
    605. 种花问题
    122. 买卖股票的最佳时机 II
    121. 买卖股票的最佳时机
    406. 根据身高重建队列
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/5674366.html
Copyright © 2020-2023  润新知