• Scalaz(9)- typeclass:checking instance abiding the laws


      在前几篇关于Functor和Applilcative typeclass的讨论中我们自定义了一个类型Configure,Configure类型的定义是这样的:

     1 case class Configure[+A](get: A)
     2 object Configure {
     3     implicit val configFunctor = new Functor[Configure] {
     4         def map[A,B](ca: Configure[A])(f: A => B): Configure[B] = Configure(f(ca.get))
     5     }
     6     implicit val configApplicative = new Applicative[Configure] {
     7         def point[A](a: => A) = Configure(a)
     8         def ap[A,B](ca: => Configure[A])(cfab: => Configure[A => B]): Configure[B] = cfab map {fab => fab(ca.get)}
     9     }
    10 }

    通过定义了Configure类型的Functor和Applicative隐式实例(implicit instance),我们希望Configure类型既是一个Functor也是一个Applicative。那么怎么才能证明这个说法呢?我们只要证明Configure类型的实例能遵循它所代表的typeclass操作定律就行了。Scalaz为大部分typeclass提供了测试程序(scalacheck properties)。在scalaz/scalacheck-binding/src/main/scala/scalaz/scalacheck/scalazProperties.scala里我们可以发现有关functor scalacheck properties:

     1 object functor {
     2     def identity[F[_], X](implicit F: Functor[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
     3       forAll(F.functorLaw.identity[X] _)
     4 
     5     def composite[F[_], X, Y, Z](implicit F: Functor[F], af: Arbitrary[F[X]], axy: Arbitrary[(X => Y)],
     6                                    ayz: Arbitrary[(Y => Z)], ef: Equal[F[Z]]) =
     7       forAll(F.functorLaw.composite[X, Y, Z] _)
     8 
     9     def laws[F[_]](implicit F: Functor[F], af: Arbitrary[F[Int]], axy: Arbitrary[(Int => Int)],
    10                    ef: Equal[F[Int]]) = new Properties("functor") {
    11       include(invariantFunctor.laws[F])
    12       property("identity") = identity[F, Int]
    13       property("composite") = composite[F, Int, Int, Int]
    14     }
    15   }

    可以看到:functor.laws[F[_]]主要测试了identity, composite及invariantFunctor的properties。在scalaz/Functor.scala文件中定义了这几条定律:

     1  trait FunctorLaw extends InvariantFunctorLaw {
     2     /** The identity function, lifted, is a no-op. */
     3     def identity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean = FA.equal(map(fa)(x => x), fa)
     4 
     5     /**
     6      * A series of maps may be freely rewritten as a single map on a
     7      * composed function.
     8      */
     9     def composite[A, B, C](fa: F[A], f1: A => B, f2: B => C)(implicit FC: Equal[F[C]]): Boolean = FC.equal(map(map(fa)(f1))(f2), map(fa)(f2 compose f1))
    10   }
    11

    我们在下面试着对那个Configure类型进行Functor实例和Applicative实例的测试:

     1 import scalaz._
     2 import Scalaz._
     3 import shapeless._
     4 import scalacheck.ScalazProperties._
     5 import scalacheck.ScalazArbitrary._
     6 import scalacheck.ScalaCheckBinding._
     7 import org.scalacheck.{Gen, Arbitrary}
     8 implicit def cofigEqual[A]: Equal[Configure[A]] = Equal.equalA
     9                                                   //> cofigEqual: [A#2921073]=> scalaz#31.Equal#41646[Exercises#29.ex1#59011.Confi
    10                                                   //| gure#2921067[A#2921073]]
    11 implicit def configArbi[A](implicit a: Arbitrary[A]): Arbitrary[Configure[A]] =
    12    a map { b => Configure(b) }                    //> configArbi: [A#2921076](implicit a#2921242: org#15.scalacheck#121951.Arbitra
    13                                                   //| ry#122597[A#2921076])org#15.scalacheck#121951.Arbitrary#122597[Exercises#29.
    14                                                   //| ex1#59011.Configure#2921067[A#2921076]]

    除了需要的import外还必须定义Configure类型的Equal实例以及任意测试数据产生器(test data generator)configArbi[A]。我们先测试Functor属性:

    1 functor.laws[Configure].check                     //> 
    2 + functor.invariantFunctor.identity: OK, passed 100 tests.
    3                                                   //| 
    4 + functor.invariantFunctor.composite: OK, passed 100 tests.
    5                                                   //| 
    6 + functor.identity: OK, passed 100 tests.
    7                                                   //| 
    8 + functor.composite: OK, passed 100 tests.

    成功通过Functor定律测试。

    再看看Applicative的scalacheck property:scalaz/scalacheck/scalazProperties.scala

     1  object applicative {
     2     def identity[F[_], X](implicit f: Applicative[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
     3       forAll(f.applicativeLaw.identityAp[X] _)
     4 
     5     def homomorphism[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], af: Arbitrary[X => Y], e: Equal[F[Y]]) =
     6       forAll(ap.applicativeLaw.homomorphism[X, Y] _)
     7 
     8     def interchange[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], afx: Arbitrary[F[X => Y]], e: Equal[F[Y]]) =
     9       forAll(ap.applicativeLaw.interchange[X, Y] _)
    10 
    11     def mapApConsistency[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[F[X]], afx: Arbitrary[X => Y], e: Equal[F[Y]]) =
    12       forAll(ap.applicativeLaw.mapLikeDerived[X, Y] _)
    13 
    14     def laws[F[_]](implicit F: Applicative[F], af: Arbitrary[F[Int]],
    15                    aff: Arbitrary[F[Int => Int]], e: Equal[F[Int]]) = new Properties("applicative") {
    16       include(ScalazProperties.apply.laws[F])
    17       property("identity") = applicative.identity[F, Int]
    18       property("homomorphism") = applicative.homomorphism[F, Int, Int]
    19       property("interchange") = applicative.interchange[F, Int, Int]
    20       property("map consistent with ap") = applicative.mapApConsistency[F, Int, Int]
    21     }
    22   }

    applicative.laws定义了4个测试Property再加上apply的测试property。这些定律(laws)在scalaz/Applicative.scala里定义了:

     1  trait ApplicativeLaw extends ApplyLaw {
     2     /** `point(identity)` is a no-op. */
     3     def identityAp[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean =
     4       FA.equal(ap(fa)(point((a: A) => a)), fa)
     5 
     6     /** `point` distributes over function applications. */
     7     def homomorphism[A, B](ab: A => B, a: A)(implicit FB: Equal[F[B]]): Boolean =
     8       FB.equal(ap(point(a))(point(ab)), point(ab(a)))
     9 
    10     /** `point` is a left and right identity, F-wise. */
    11     def interchange[A, B](f: F[A => B], a: A)(implicit FB: Equal[F[B]]): Boolean =
    12       FB.equal(ap(point(a))(f), ap(f)(point((f: A => B) => f(a))))
    13 
    14     /** `map` is like the one derived from `point` and `ap`. */
    15     def mapLikeDerived[A, B](f: A => B, fa: F[A])(implicit FB: Equal[F[B]]): Boolean =
    16       FB.equal(map(fa)(f), ap(fa)(point(f)))
    17   }

    再测试一下Configure类型是否也遵循Applicative定律:

     1 pplicative.laws[Configure].check                 //> 
     2 + applicative.apply.functor.invariantFunctor.identity: OK, passed 100 tests
     3                                                   //| 
     4                                                   //|   .
     5                                                   //| 
     6 + applicative.apply.functor.invariantFunctor.composite: OK, passed 100 test
     7                                                   //| 
     8                                                   //|   s.
     9                                                   //| 
    10 + applicative.apply.functor.identity: OK, passed 100 tests.
    11                                                   //| 
    12 + applicative.apply.functor.composite: OK, passed 100 tests.
    13                                                   //| 
    14 + applicative.apply.composition: OK, passed 100 tests.
    15                                                   //| 
    16 + applicative.identity: OK, passed 100 tests.
    17                                                   //| 
    18 + applicative.homomorphism: OK, passed 100 tests.
    19                                                   //| 
    20 + applicative.interchange: OK, passed 100 tests.
    21                                                   //| 
    22 + applicative.map consistent with ap: OK, passed 100 tests.

    功通过了Applicative定律测试。现在我们可以说Configure类型既是Functor也是Applicative。

     

  • 相关阅读:
    cpu几种架构区别
    linux之cp/scp命令+scp命令详解
    解读Linux命令格式(转)
    IO虚拟化简单了解
    NoSQL-来自维基百科
    kvm命令参数记录
    kvm 简单了解
    host与guest间共享文件夹的三种方法(原创)
    新装linux系统最基本设置
    kernel编译速度提高
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/4875649.html
Copyright © 2020-2023  润新知