• nlp方向的baseline


    baseline:

    1、word2vector:Efficient Estimation of Word Representations in Vector Space(基于向量空间中词表示的有效估计)

    2、glove:GloVe: Global Vectors for Word Representation(基于全局信息的单词向量表示)EMNLP2014

    3、char_embedding(c2w):Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation(从字符中生成嵌入:用于开放词表示的组合字符模型)EMNLP2015

    4、textcnn:Convolutional Neural Networks for Sentence Classification(基于卷积神经网络的句子分类) 会议:E M N L P 2 0 1 4

    5、chartextcnn:Character-level Convolutional Networks for Text Classification(使用字符级别的卷积神经网络来做文本分类任务)会议NIPS 2015

     6、fasttext:Bag of Tricks for Efficient Text Classification:Fasttext: 对于高效率文本分类的一揽子技巧  会议:E A C L 2 0 1 7

    7、deep_nmt:Sequence to Sequence Learning with Neural Networks(使用神经网络来做序列到序列的学习)会议:N I P S 2014

    8、attention_nmt:Neural Machine Translation by Jointly Learning to Align and Translate(联合学习对齐和翻译的神经机器翻译模型)会议 :ICLR2015

    9、han_attention:Hierarchical Attention Networks for Document Classification(使用层次注意力网络做文档分类)会议:NAAC2016

    10、sgn:SGM Sequence Generation Model for Multi-Label Classification(使用序列生成模型做多标签文本分类)会议:coling2018 best paper

    机器翻译

    loung_nmt:Effective Approaches to Attention-based Neural Machine Translation(基于注意力机制的有效神经机器翻译方法)E M N L P 2015

    coverage:Modeling Coverage for Neural Machine Translation(神经机器翻译的翻译覆盖方法)ACL2016

    subword_nmt:Neural Machine Translation of Rare Words with Subword Units使用子词来解决神经机器翻译的罕见词问题 ACL2016

    情感分析:

    TextRNN:Recurrent Neural Network for Text Classification with Multi Task Learning 循环神经网络用于多任务学习的文本分类(IJCAI2016)

    TreeLSTM:Improved Semantic Representations From Tree-Structured Long Short- Term Memory Networks从树结构的长短期记忆网络改进语义表示 ACL2015

    TD-LSTM_TC-LSTM_AT-LSTM:Attention-based LSTM for Aspect-level Sentiment Classification基于注意的LSTM用于Aspect-level的情感分类EMNLP2016

                                                         Effective LSTMs for Target-Dependent Sentiment Classification:有效的LSTM用于Target-Dependent的情感分类 COLING2016

    MemNet:Aspect Level Sentiment classification  with Deep Memory Network基于深度记忆网络在Aspect-level的情感分类 EMNLP2016

        End-To-End Memory Networks

        Interactive Attention Networks for Aspect-Level Sentiment Classification

        MEMORY NETWORKS

        NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

    BERT-ABSA:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding语言理解的深度双向Transformers的预训练 NAACL2019 bestpaper

             Attention Is All You Need

    NLP-预训练模型

    transformer:Attention is all you need注意力机制是大家需要掌握的 NIPS

    transformer_xl:Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context 超出固定长度上下文的注意力语言模型 ACL

    elmo:Deep contextualized word representations 基于深度上下文的词表征 NAACL

    gpt: Improving Language Understanding by Generative Pre-Training 通过生成式预训练提升语义理解

    bert:BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 预训练的深度双向Transformers用于语义理解

    ulmfit:Universal Language Model Fine-tuning for Text Classification 微调通用的语言模型用于文本分类任务 2017EMNLp

    ALBERT:ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS精简版的bert用于语言表征的自监督学习

    mass:Masked Sequence to Sequence Pre-training for Language Generation 屏蔽序列到序列的预训练用于语言生成 2019PMLR

    xlnet:Generalized Autoregressive Pretraining for Language Understanding 通用化的自回归预训练模型用于语言理解 2019NeurlPS

    electra:PRE-TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS 预训练的文本编码器作为判别器而不是生成器 2020ICLR

    NLP阅读理解:

    MRC:Teaching Machines to Read and Comprehend 指导机器阅读与理解 2015NIPS

    BIDAF:Bidirectional Attention Flow for Machine Comprehension 应用于机器阅读理解的双向注意力机制 2017ICLR

    PGNet:Get To The Point :Summarization with Pointer-Generator Networks指针生成网络在文本摘要的应用 2017ACL

    adv:Improving the Robustness of Question Answering Systems to Question Paraphrasing 改善阅读理解系统中的鲁棒性问题 2019ACL

    xlnet:Generalized Autoregressive Pretraining for Language Understanding 对于语言理解的生成式自回归预训练模型 2019Nips

    强化学习:

    DQN:Playing Atari with Deep Reinforcement Learning 使用深度强化学习玩Atari游戏 NIPS 2013

    DQN改进:Deep Reinforcement Learning with Double Q-Learning带有Double-Q Learning 的深度强化学习 AAAI2016

        Priortized Experience Replay 优先化经验回放 ICLR2016

        Dueling Network Atchitectures for Deep Reinforcement Learning使用Duel网络结构的深度强化学习 arxiv2016

    C51: A Distributional Perspective on Reinforcement Learning 基于分布式视角的强化学习 ICML2017

    QRDQN:Distributional Reinforcement Learning with Quantile Regression 分位数回归的分布式强化学习 AAAI2018

    REINFORCE:Policy Gradient Methods for Reinforcement Learning with Function Approximation 强化学习的策略梯度方法与函数估计 2000NIPS

    PPO:Proximal Policy Optimization Algorithms 近似策略优化算法 arxiv2017

    DDPG:Continuous Control with Deep Reinforcement Learning 使用深度强化学习的连续控制 ICLR2016

    TD3:Addressing Function Approximation Error in Actor-Critic Methods  Actor-Critic方法中的函数估计误差 2018ICML

    SQL:Reinforcement Learning with Deep Energy-Based Policies 使用深度能量策略网络的强化学习 ICML2017

    SAC:Soft Actor-Critic : Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor   ICML2018

    图神经网络

    Node2vec:node2vec:Scalable Feature Learning for Networks大规模网络节点的表征学习 kdd2016

    LINE:LINE:Large-scale Information Network Embedding 大规模信息网络特征表示 WWW2015

    SDNE:Structural Deep Network Embedding 结构化深度网络表示 KDD2016

    metapath2vec:metapath2vec:Scalable Representation Learning for Heterogenerous Networks 结构化深度网络表示 KDD2017

    TransE:Translating Embeddings for Modeling Multi-relational Data 知识图谱向量化表示 NIPS2013

    GAT:Graph Attention Networks 图注意力网络 ICLR2018

    GraphSAGE:Inductive Representation Learning on Large Graphs 大规模网络的归纳式学习 NIPS2018

    GCN:Semi-Supervised Classification with Graph Convolutional Networks图卷积神经网络的半监督分类 ICLR2017

    GGNN:Gated Graph Sequence Neural Networks 门控序列图神经网络 ICLR2016

    MPNN:Neural Message Passing for Quantum Chemistry 神经网络消息传递应用量子化学 ICML2017

    文本匹配:

    DSSM:Learning Deep Structured Semantic Models for Web Search using Clickthrough Data 利用点击数据学习网页搜索中深层结构化语义模型 CIKM2013

    SiameseNet:Learning Text Similarity with Siamese Recurrent Networks 利用孪生循环神经网络学习文本相似性 ACL2016

    Comp-Agg:A COMPARE-AGGREGATE MODEL FOR MATCHING TEXT SEQUENCES 文本序列处理中的比较-聚合模型  ICLR2017

    ESIM:Enhanced LSTM for Natural Language Inference  ACL2017

    BiMPM:Bilateral Multi-Perspective Matching for Natural Language Sentences 自然语言文本中的双向多视角匹配 IJCAI2017

    关系抽取:

    cnn:Relation Classification via Convolutional Deep Neural Network 基于深度卷积神经网络的关系识别 COLING2014

    crcnn与pcnn:Classifying Relations by Ranking with Convolutional Neural Networks基于卷积神经网络排序进行关系识别 ACL|IJCNLP2015

          Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks pcnn实现远程监督在关系提取中的应用EMNLP2015

    atr-blsrm:Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification 基于双向LSTM及注意力机制的关系分类 ACL2016

    LSTM-LSTM-bias:Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme基于一种新的标注策略进行实体和关系的联合抽取ACL2017

    CasRel:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction 关系三元组抽取-- 一种新的级联二元标注框架 ACL2020

    命名实体识别:

    Bidirectional LSTM-CRF Models for Sequence Tagging 用于序列标注的双向LSTM-CRF模型

    Chinese NER Using Lattice LSTM 基于网格LSTM的中文命名实体识别 ACL2018

    CNN-Based Chinese NER with Lexicon Rethinking 基于LR-CNN的中文命名实体识别IJCAI 2019

    A Lexicon-Based Graph Neural Network for Chinese NER基于词典的图神经网络解决命名实体识别 EMNLP2019

    TENER:Adapting Transformer Encoder for Named Entity Recognition 适用于命名实体识别的改进Transformer ACL2019

    Simplify the Usage of Lexicon in Chinese NER 简化中文NER中词典的使用 ACL2020

        

  • 相关阅读:
    C++学习笔记-C++对C语言的扩充和增强
    C++学习笔记-C++与C语言的一些区别
    C++学习笔记-C++与C语言的一些区别
    C学习笔记-字符串处理函数
    C学习笔记-字符串处理函数
    C学习笔记-gdb
    深入理解C语言-函数指针
    深入理解C语言-函数指针
    深入理解C语言-结构体做函数参数
    async 珠峰培训node正式课笔记 【async】任务流程控制,异步流程控制
  • 原文地址:https://www.cnblogs.com/tianyudizhua/p/16003584.html
Copyright © 2020-2023  润新知