排序与搜索
一、排序
排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法。
排序算法的稳定性
稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7)(5, 6)
在这个状况下,有可能产生两种不同的结果,一个是让相等键值的纪录维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)--------》稳定排序(
(3, 1) (3, 7)
维持原有)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)--------》不稳定排序
(
(3, 1) (3, 7)没有
维持原有排序)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,(比如上面的比较中加入第二个标准:第二个键值的大小)就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
1.冒泡排序
冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序算法的运作如下:
- 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
冒泡排序的分析
交换过程图示(第一次):
那么我们需要进行n-1次冒泡过程,每次对应的比较次数如下图所示:
def bubble_sort(alist): for j in range(len(alist)-1,0,-1): # j表示每次遍历需要比较的次数,是逐渐减小的 for i in range(j): if alist[i] > alist[i+1]: alist[i], alist[i+1] = alist[i+1], alist[i] li = [54,26,93,17,77,31,44,55,20] bubble_sort(li) print(li)
时间复杂度
- 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)-----改进代码后才可以实现最优时间复杂度
- 最坏时间复杂度:O(n2)
- 稳定性:稳定
点击进入冒泡法代码的另一种实现方式以及冒泡法的改进
2.选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
选择排序分析
排序过程:
def selection_sort(alist): n = len(alist) # 需要进行n-1次选择操作 for i in range(n-1): # 记录最小位置 min_index = i # 从i+1位置到末尾选择出最小数据 for j in range(i+1, n): if alist[j] < alist[min_index]: min_index = j alist[i], alist[min_index] = alist[min_index], alist[i] alist = [54,226,93,17,77,31,44,55,20] selection_sort(alist) print(alist)
时间复杂度
- 最优时间复杂度:O(n2)
- 最坏时间复杂度:O(n2)
- 稳定性:不稳定(考虑升序每次选择最大的情况)
3.插入排序
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
插入排序分析
def insert_sort(alist): # 从第二个位置,即下标为1的元素开始向前插入 for i in range(1, len(alist)): # 从第i个元素开始向前比较,如果小于前一个元素,交换位置 for j in range(i, 0, -1):#j = i [ i,i-1,i-2,i-3.....1] if alist[j] < alist[j-1]: alist[j], alist[j-1] = alist[j-1], alist[j] def insert_sort2(alist): '插入排序代码另一种写法' n = len(alist) # 从右边的无序序列中取出多少个元素执行这样的过程 for i in range(1, n): # i = [1, 2, 3, n-1] #j代表内层循环起始值 j = i #[j ,j-1,j-2,j-3.....1] #执行从右边的无序序列中取出的第一个元素,即i位置的元素,然后将其插入到前面的正确位置中 while j > 0: if alist[j] < alist[j-1]: alist[j], alist[j-1] = alist[j-1], alist[j] j -= 1 else: break# 本步对算法进行了优化 # 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态) # 最坏时间复杂度:O(n2) if __name__=='__main__': alist = [54, 26, 93, 17, 77, 31, 44, 55, 20] insert_sort(alist) print(alist) alist = [54, 26, 93, 17, 77, 31, 44, 55, 20] insert_sort2(alist) print(alist)
时间复杂度
- 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
- 最坏时间复杂度:O(n2)
- 稳定性:稳定
4.希尔排序
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
希尔排序过程
希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。
例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):
13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10
然后我们对每列进行排序:
10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45
将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:
10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45
排序之后变为:
10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94
最后以1步长进行排序(此时就是简单的插入排序了)
希尔排序的分析
def shell_sort1(alist): n = len(alist) # 初始步长 gap = n // 2 while gap > 0:#gap>=1,即gap变化到0之前,插入算法的次数 # 按步长进行插入排序 for i in range(gap, n): j = i # 插入排序 while j>=gap and alist[j-gap] > alist[j]: alist[j-gap], alist[j] = alist[j], alist[j-gap] j -= gap # 得到新的步长 gap = gap // 2 def shell_sort2(alist): '希尔排序的另一种书写方式' n = len(alist) # 初始步长 gap = n // 2#gap值自己可调,从数学角度找到最好的gap,n//2并不是最好的,看自己计算选择出最好的步长 # gap变化到0之前,插入算法的次数 while gap > 0: #插入算法,与普通的插入算法的区别就是gap步长 for j in range(gap, n):#以下几步和插入排序较为相似 #j = [gap, gap+1, gap+2, gap+3,....,n-1] i = j while i>0: if alist[i] < alist[i-gap]: alist[i-gap], alist[i] = alist[i], alist[i-gap] i -= gap else: break # 得缩短gap步长 gap = gap // 2 alist = [54,26,93,17,77,31,44,55,20] shell_sort1(alist) print(alist) shell_sort2(alist) print(alist)
时间复杂度
- 最优时间复杂度:根据步长序列的不同而不同
- 最坏时间复杂度:O(n2)
- 稳定想:不稳定
5.快速排序
快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
步骤为:
- 从数列中挑出一个元素,称为"基准"(pivot),
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
快速排序的分析
def quick_sort(alist, start, end): """快速排序""" # 递归的退出条件 if start >= end: return # 设定起始元素为要寻找位置的基准元素 mid = alist[start] # low为序列左边的由左向右移动的游标 low = start # high为序列右边的由右向左移动的游标 high = end while low < high: # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动 while low < high and alist[high] >= mid: high -= 1 # 将high指向的元素放到low的位置上 alist[low] = alist[high] # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动 while low < high and alist[low] < mid: low += 1 # 将low指向的元素放到high的位置上 alist[high] = alist[low] # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置 # 将基准元素放到该位置 alist[low] = mid # 对基准元素左边的子序列进行快速排序 quick_sort(alist, start, low-1) # 对基准元素右边的子序列进行快速排序 quick_sort(alist, low+1, end) alist = [54,26,93,17,77,31,44,55,20] quick_sort(alist,0,len(alist)-1) print(alist)
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(n2)
- 稳定性:不稳定
从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。
在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。
6.归并排序
归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。
将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
归并排序的分析:
def merge_sort(alist): if len(alist) <= 1: return alist # 二分分解 num = len(alist)//2 left = merge_sort(alist[:num]) right = merge_sort(alist[num:]) # 合并 return merge(left,right) def merge(left, right): '''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组''' #left与right的下标指针 l, r = 0, 0 result = [] while l<len(left) and r<len(right): if left[l] < right[r]: result.append(left[l]) l += 1 else: result.append(right[r]) r += 1 result += left[l:] result += right[r:] return result alist = [54,26,93,17,77,31,44,55,20] sorted_alist = mergeSort(alist) print(sorted_alist)
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(nlogn) 空间复杂度比别的排序大,因为执行完之后是新的列表,需要在新列表上保存处理(sorted_alist = mergeSort(alist)
),不像别的排序都是在自身排序。 - 归并排序的效率远高于选择排序和冒泡排序
- 稳定性:稳定
7.堆排序
属于选择排序的一种,堆排序的思想是怎样的(以大根堆为例):
- 首先将待排序的数组构造出一个大根堆
- 取出这个大根堆的堆顶节点(最大值),与堆的最下最右的元素进行交换,然后把剩下的元素再构造出一个大根堆
- 重复第二步,直到这个大根堆的长度为1,此时完成排序。
#沿左,右子节点较大者依次往下调整 def MAX_Heapify( array, HeapSize,root ):#在堆中做结构调整使得父节点的值大于子节点 left = 2*root + 1 right = left + 1 larger = root if left < HeapSize and array[larger] < array[left]: larger = left if right < HeapSize and array[larger] <array[right]: larger = right if larger != root:#如果做了堆调整则larger的值等于左节点或者右节点的,这个时候做对调值操作 array[larger],array[root] = array[root],array[larger] MAX_Heapify(array,HeapSize,larger) #创建堆 def Build_MAX_Heap( array ):#构造一个堆,将堆中所有数据重新排序 HeapSize = len( array )#将堆的长度单独拿出来方便 for i in range( HeapSize // 2 - 1, -1, -1 ):#从后往前出数 MAX_Heapify( array,HeapSize, i) #大顶堆排序 def HeapSort( array ):#将根节点取出与最后一位做对调,对前面len-1个节点继续进行对调整过程。 Build_MAX_Heap( array ) #交换堆顶与最后一个结点,再调整堆 for i in range(len(array) - 1, -1, -1 ): array[0], array[i] = array[i], array[0] MAX_Heapify(array, i, 0) return array a = [ -3, 1, 3, 0, 9, -9, 11, 82, 7 ] print(HeapSort(a))
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(nlogn)
- 稳定性:不稳定
常见排序算法效率比较
注:堆排序与二叉树相关。
快速排序一定要、必须的掌握,用的最多。
可以参考两篇文章,写的不错:程序员面试必备之排序算法汇总(上),程序员面试必备之排序算法汇总(下)。
二、搜索
搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找
1.顺序查找
#方式1 alist=[1,3,5,7,9,2,4,6,8,10] x=int(input('请输入要查找的整数:')) for i in alist: if i==x: print('找到了,整数%d在列表中。'%x) #方式2 alist=[1,3,5,7,9,2,4,6,8,10] x=int(input('请输入要查找的整数:')) for i in range(len(alist)): if alist[i]==x: print('找打了,第%d个数是%d。'%(i+1,x))
2.二分法查找
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
二分法查找实现
(非递归实现)
def binary_search(alist, item): first = 0 last = len(alist) - 1 while first <= last: midpoint = (first + last) // 2 if alist[midpoint] == item: return True elif item < alist[midpoint]: last = midpoint - 1 else: first = midpoint + 1 return False testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42, ] print(binary_search(testlist, 3)) print(binary_search(testlist, 13))
(递归实现)
def binary_search(alist, item): if len(alist) == 0: return False midpoint = len(alist) // 2 if alist[midpoint] == item: return True elif item < alist[midpoint]: return binary_search(alist[:midpoint], item) else: return binary_search(alist[midpoint + 1:], item) testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42, ] print(binary_search(testlist, 3)) print(binary_search(testlist, 13))
时间复杂度
- 最优时间复杂度:O(1)
- 最坏时间复杂度:O(logn)
顺序查找的最坏时间复杂度是O(n),最优时间复杂度是O(1).所以二分查找算法使得搜索得到了优化。
3.Hash查找
算法简介:哈希表就是一种以键-值(key-indexed) 存储数据的结构,只要输入待查找的值即key,即可查找到其对应的值。
算法思想:哈希的思路很简单,如果所有的键都是整数,那么就可以使用一个简单的无序数组来实现:将键作为索引,值即为其对应的值,这样就可以快速访问任意键的值。这是对于简单的键的情况,我们将其扩展到可以处理更加复杂的类型的键。
算法流程:1)用给定的哈希函数构造哈希表;
2)根据选择的冲突处理方法解决地址冲突;常见的解决冲突的方法:拉链法和线性探测法。
3)在哈希表的基础上执行哈希查找。
复杂度分析:单纯论查找复杂度:对于无冲突的Hash表而言,查找复杂度为O(1)(注意,在查找之前我们需要构建相应的Hash表)。
算法实现:
# 忽略了对数据类型,元素溢出等问题的判断。 class HashTable: def __init__(self, size): self.elem = [None for i in range(size)] # 使用list数据结构作为哈希表元素保存方法 self.count = size # 最大表长 def hash(self, key): return key % self.count # 散列函数采用除留余数法 def insert_hash(self, key): """插入关键字到哈希表内""" address = self.hash(key) # 求散列地址 while self.elem[address]: # 当前位置已经有数据了,发生冲突。 address = (address+1) % self.count # 线性探测下一地址是否可用 self.elem[address] = key # 没有冲突则直接保存。 def search_hash(self, key): """查找关键字,返回布尔值""" star = address = self.hash(key) while self.elem[address] != key: address = (address + 1) % self.count if not self.elem[address] or address == star: # 说明没找到或者循环到了开始的位置 return False return True if __name__ == '__main__': list_a = [12, 67, 56, 16, 25, 37, 22, 29, 15, 47, 48, 34] hash_table = HashTable(12) for i in list_a: hash_table.insert_hash(i) for i in hash_table.elem: if i: print((i, hash_table.elem.index(i)), end=" ") print(" ") print(hash_table.search_hash(15)) print(hash_table.search_hash(33))