今天线上SQLServer数据库的CPU被打爆了,紧急情况下,分析了数据库阻塞、连接分布、最耗CPU的TOP10 SQL、查询SQL并行度配置、查询SQL 重编译的原因等等
整理了一些常用的SQL
1. 查询数据库阻塞
SELECT * FROM sys.sysprocesses WHERE blocked<>0
查询结果中,重点看Blocked这一列,先找出最多的SID,然后循环找出Root的阻塞根源SID
查询阻塞根源Session的SQL
DBCC Inputbuffer(sid)
2. 查询SQL连接分布
SELECT Hostname FROM sys.sysprocesses WHERE hostname<>''
3. 查询最消耗CPU的SQL Top10
select top(10) st.text as Query, qs.total_worker_time, qs.execution_count from sys.dm_exec_query_stats as qs CROSS Apply sys.dm_exec_sql_text(qs.sql_handle) AS st order by qs.total_worker_time desc
4. 查看SQLServer并行度
SELECT value_in_use FROM sys.configurations WHERE name = 'max degree of parallelism'
并行度如果设置为1,To suppress parallel plan generation, set max degree of parallelism to 1
将阻止并行编译生成SQL执行计划,最大并行度设置为1
USE DatabaseName ; GO EXEC sp_configure 'show advanced options', 1; GO RECONFIGURE WITH OVERRIDE; GO EXEC sp_configure 'max degree of parallelism', 16; GO RECONFIGURE WITH OVERRIDE; GO
5. 查询SQL Server Recompilation Reasons
select dxmv.name, dxmv.map_key,dxmv.map_value from sys.dm_xe_map_values as dxmv where dxmv.name='statement_recompile_cause' order by dxmv.map_key
6. 将SQL Trace文件存入一张表,做聚合分析(CPU、IO、执行时间等)
SELECT * INTO TabSQL FROM fn_trace_gettable('C:Users***DesktopTracesql05trace20180606-业务.trc', default); GO
对上述表数据进行聚合分析最耗时的SQL
select top 100 replace(replace(replace( substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') as '名称', --substring(Textdata,1,6600) as old, count(*) as '数量', sum(duration/1000) as '总执行时间ms', avg(duration/1000) as '平均执行时间ms', avg(cpu) as '平均CPU时间ms', avg(reads) as '平均读次数', avg(writes) as '平均写次数', LoginName from TabSQL t group by replace(replace(replace( substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') , LoginName order by sum(duration) desc
最耗IO的SQL
select TOP 100 replace(replace(replace( substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') as '名称' ,LoginName, count(*) as '数量', sum(duration/1000) as '总执行时间ms', avg(duration/1000) as '平均执行时间ms', sum(cpu) as '总CPU时间ms', avg(cpu) as '平均CPU时间ms', sum(reads) as '总读次数', avg(reads) as '平均读次数', avg(writes) as '平均写次数' from TabSQL group by replace(replace(replace( substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') ,LoginName order by sum(reads) desc
最耗CPU的SQL
SELECT TOP 100 replace(replace(replace( substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') as '名称',LoginName, count(*) as '数量', sum(duration/1000) as '总执行时间ms', avg(duration/1000) as '平均执行时间ms', sum(cpu) as '总CPU时间', avg(cpu) as '平均CPU时间', avg(reads) as '平均读次数', avg(writes) as '平均写次数' from TabSQL group by replace(replace(replace( substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') ,LoginName order by avg(cpu) desc
周国庆
2019/7/8