• HashMap ( Java 8)


    HashTable是早起java提供的基于hash表的实现,不允许存放null键和值,是同步的,影响开销,不太被推荐。

    HashMap行为上和HashTable差不多,不是同步的,允许键和值为null,通过put(),get()来存取数据。

    一、默认属性值:

    这里摘出了重要属性的默认值:

    // 默认容量是16,而且如果自定义容量必须上2的幂
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    //最大容量是1073741824
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //默认负载 因子是0.75,少了可能会频繁扩容,多了可能会影响效率,默认值比较适合大多数场景
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //树化阀值为8,链表长度大于等于8就会转化成红黑树
    static final int TREEIFY_THRESHOLD = 8;
    //链表长度小于6就会由数退化为链表
    static final int UNTREEIFY_THRESHOLD = 6;

    二、构造方法 

    HashMap 的构造方法:

        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }

     构造方法可以允许你自定义初始容量,但是HashMap会通过tableSizeFor(int cap)方法去讲容量转化为最接近2的幂的值

    static final int tableSizeFor(int cap) {
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }

    三、put方法

    HashMap的PUT方法:主要调用了putVal()方法

        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }

    putVal()方法,标注了一些说明:

     1     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
     2                    boolean evict) {
     3         Node<K,V>[] tab; Node<K,V> p; int n, I;
     4         // 如果table为null或者长度为0,调用resize()进行初始化为16
     5         if ((tab = table) == null || (n = tab.length) == 0)
     6             //n为当前数组的长度
     7             n = (tab = resize()).length;
     8         //将n-1和key的hash值相与值赋给i,如果当前数组第i位没有值,则将此数据插入到这个索引位置
     9         if ((p = tab[i = (n - 1) & hash]) == null)
    10             tab[i] = newNode(hash, key, value, null);
    11         //如果当前索引位置有数据,则新建一个节点,放在上一个节点后面    
    12         else {
    13             Node<K,V> e; K k;
    14             //如果key相同,说明这次操作是修改操作,将val值修改
    15             if (p.hash == hash &&
    16                 ((k = p.key) == key || (key != null && key.equals(k))))
    17                 e = p;
    18             //如果p是树节点的话,则按照树节点进行插入
    19             else if (p instanceof TreeNode)
    20                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
    21             //遍历节点,将新节点插入到链表尾部
    22             else {
    23                 for (int binCount = 0; ; ++binCount) {
    24                     if ((e = p.next) == null) {
    25                         p.next = newNode(hash, key, value, null);
    26                         //如果节点数大于等于8,则进行树化操作
    27                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
    28                             treeifyBin(tab, hash);
    29                         break;
    30                     }
    31                     //如果插入到节点和原有节点key相同,修改原有节点
    32                     if (e.hash == hash &&
    33                         ((k = e.key) == key || (key != null && key.equals(k))))
    34                         break;
    35                     p = e;
    36                 }
    37             }
    38             //e不为空说明是一次修改操作,将当前节点e的value替换为新的
    39             if (e != null) { // existing mapping for key
    40                 V oldValue = e.value;
    41                 if (!onlyIfAbsent || oldValue == null)
    42                     e.value = value;
    43                 afterNodeAccess(e);
    44                 return oldValue;
    45             }
    46         }
    47         ++modCount;
    48         //如果数组大小大于阀值,则扩容
    49         if (++size > threshold)
    50             resize();
    51         afterNodeInsertion(evict);
    52         return null;
    53     }                                                                                                                        

    resize()方法:

        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            if (oldCap > 0) {
                 //极限的设定
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                 //扩容后未达到极限,新的数组扩容为两倍,阈值也扩至原来两倍
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
             //构造方法里自定义数组大小
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
             //默认的容量16,阈值0.75*16=12
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            //如果阈值为0(自定义数组大小)设置阈值为负载因子*容量
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
             //阈值为新计算的值
             threshold = newThr;
             // ···
             return newTab;
         }              

    treeifyBin()方法:

        final void treeifyBin(Node<K,V>[] tab, int hash) {
            int n, index; Node<K,V> e;
            //如果桶容量大小为达到最小树化容量(64)时,则扩容
            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                resize();
            //如果当前数组位置不为空,转化为树
            else if ((e = tab[index = (n - 1) & hash]) != null) {
                TreeNode<K,V> hd = null, tl = null;
                do {
                    TreeNode<K,V> p = replacementTreeNode(e, null);
                    if (tl == null)
                        hd = p;
                    else {
                        p.prev = tl;
                        tl.next = p;
                    }
                    tl = p;
                } while ((e = e.next) != null);
                if ((tab[index] = hd) != null)
                    hd.treeify(tab);
            }
        }    

    Clear()方法:将数组内清空

    public void clear() {
            Node<K,V>[] tab;
            modCount++;
            if ((tab = table) != null && size > 0) {
                size = 0;
                for (int i = 0; i < tab.length; ++i)
                    tab[i] = null;
            }
        }

    get()方法,调用getNode()方法:

        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            //数组不为空
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                //检查第一个节点的值是否对的上
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                //第一个值对不上,看看有没有下一个节点
                if ((e = first.next) != null) {
                    //如果第一个节点上树节点,则去树中查找
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    //如果是链表,则遍历全部链表,看是否有该key值
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            //没有返回null
            return null;
        }                    

    containsKey():同样是去调用getNode()

        public boolean containsKey(Object key) {
            return getNode(hash(key), key) != null;
        }
  • 相关阅读:
    数据结构 【实验 串的基本操作】
    Ioc容器依赖注入-Spring 源码系列(2)
    定时任务管理中心(dubbo+spring)-我们到底能走多远系列47
    jvm内存增长问题排查简例
    Ioc容器beanDefinition-Spring 源码系列(1)
    SPI机制
    java工厂-积木系列
    java单例-积木系列
    利用spring AOP 和注解实现方法中查cache-我们到底能走多远系列(46)
    java 静态代理-积木系列
  • 原文地址:https://www.cnblogs.com/tiandz/p/12241617.html
Copyright © 2020-2023  润新知