• Master of Sequence


    Master of Sequence

    时间限制: 10 Sec  内存限制: 128 MB

    题目描述

    There are two sequences a1,a2,...,an , b1,b2,...,bn . Let . There are m operations within three kinds as following:
    • 1 x y: change value ax to y.
    • 2 x y: change value bx to y.
    • 3 k: ask min{t|k≤S(t)}

    输入

    The first line contains a integer T (1≤T≤5) representing the number of test cases.
    For each test case, the first line contains two integers n (1≤n≤100000), m (1≤m≤10000).
    The following line contains n integers representing the sequence a1,a2,...,an .
    The following line contains n integers representing the sequence b1,b2,...,bn .
    The following m lines, each line contains two or three integers representing an operation mentioned above.
    It is guaranteed that, at any time, we have 1≤ai≤1000, 1≤bi,k≤109 . And the number of queries (type 3 operation) in each test case will not exceed 1000.

    输出

    For each query operation (type 3 operation), print the answer in one line.

    样例输入

    2
    4 6
    2 4 6 8
    1 3 5 7
    1 2 3
    2 3 3
    3 15
    1 3 8
    3 90
    3 66
    8 5
    2 4 8 3 1 3 6 24
    2 2 39 28 85 25 98 35
    3 67
    3 28
    3 73
    3 724
    3 7775
    

    样例输出

    17
    87
    65
    72
    58
    74
    310
    2875

    题目链接:http://icpc.upc.edu.cn/problem.php?cid=1723&pid=10

    思路: (t-bi)/ai = [k1*ai+c1-(k2*ai+c2)]/ai = k1-k2 + (c1-c2)/ai,这样就可以分别维护k1的和,k2的和,再维护一下c2>c1的情况。
    #include<bits/stdc++.h>
    #define N 1005
    using namespace std;
    
    long long c[N][N]={0};
    
    void updata(long long arr[],long long pos,long long value)
    {
        pos++;
        for(long long i=pos;i<N;i+=i&(-i))arr[i]+=value;
    }
    
    long long Sum(long long arr[],long long pos)
    {
        pos++;
        long long ans=0;
        for(long long i=pos;i>0;i-=i&(-i))ans+=arr[i];
        return ans;
    }
    
    long long sum_a[N]={0};
    long long cnt=0;
    
    
    void init()
    {
        cnt=0;
        memset(sum_a,0,sizeof(sum_a));
        memset(c,0,sizeof(c));
    }
    
    long long a[N*100],b[N*100];
    
    long long f(long long t)
    {
        long long ans=cnt;
        for(long long i=1;i<N;i++)
        if(sum_a[i])
        {
            ans+=t/i*sum_a[i];
            ans-=sum_a[i]-Sum(c[i],t%i);
        }
        return ans;
    }
    
    
    int  main()
    {
        long long t;
        scanf("%lld",&t);
        while(t--)
        {
            init();
            long long n,m;
            scanf("%lld %lld",&n,&m);
            for(long long i=1;i<=n;i++)scanf("%lld",&a[i]);
            for(long long i=1;i<=n;i++)scanf("%lld",&b[i]);
            
            for(long long i=1;i<=n;i++)
            {
                sum_a[a[i]]++;
                updata(c[a[i]],b[i]%a[i],1);
                cnt-=b[i]/a[i];
            }
            
            while(m--)
            {
                long long type;
                scanf("%lld",&type);
                if(type==1)
                {
                    long long x,y;
                    scanf("%lld %lld",&x,&y);
                    sum_a[a[x]]--;
                    updata(c[a[x]],b[x]%a[x],-1);
                    cnt+=b[x]/a[x];
                    
                    sum_a[y]++;
                    updata(c[y],b[x]%y,1);
                    cnt-=b[x]/y;
                    a[x]=y;
                }
                else
                if(type==2)
                {
                    long long x,y;
                    scanf("%lld %lld",&x,&y);
                    updata(c[a[x]],b[x]%a[x],-1);
                    cnt+=b[x]/a[x];
                    
                    updata(c[a[x]],y%a[x],1);
                    cnt-=y/a[x];
                    b[x]=y;
                }
                else
                {
                    long long k;
                    scanf("%lld",&k);
                    long long l=0,r=1e14;
                    long long ans=0;
                    
                    while(l<=r)
                    {
                        long long mid=(l+r)/2;
                        if(f(mid)>=k)
                        {
                            ans=mid;
                            r=mid-1;
                        }
                        else
                        l=mid+1;
                    }
                    printf("%lld
    ",ans);
                }
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Information retrieval (IR class2)
    HTML随笔
    Evaluating Automatically Generated timelines from the Web (paper1)
    Kali 2020.1版本安装
    SystemTap
    Linux之IDIDID
    调试&内核探针
    Return-to-dl-resolve
    转载!
    一张图系列之函数重定位
  • 原文地址:https://www.cnblogs.com/tian-luo/p/10660118.html
Copyright © 2020-2023  润新知