• Pku3080 Blue Jeans


    Pku3080 Blue Jeans

    Time Limit:1000MS  Memory Limit:265536K
    Total Submit:4 Accepted:3

    Description

    The Genographic Project is a research partnership between IBM and The National Geographic Society that is analyzing DNA from hundreds of thousands of contributors to map how the Earth was populated.

    As an IBM researcher, you have been tasked with writing a program that will find commonalities amongst given snippets of DNA that can be correlated with individual survey information to identify new genetic markers.

    A DNA base sequence is noted by listing the nitrogen bases in the order in which they are found in the molecule. There are four bases: adenine (A), thymine (T), guanine (G), and cytosine (C). A 6-base DNA sequence could be represented as TAGACC.

    Given a set of DNA base sequences, determine the longest series of bases that occurs in all of the sequences.


    给出n个长度为60的DNA基因(A腺嘌呤 G鸟嘌呤 T胸腺嘧啶 C胞嘧啶)序列,求出他们的最长公共子序列

    Input

    Input to this problem will begin with a line containing a single integer n indicating the number of datasets. Each dataset consists of the following components:
    A single positive integer m (2 <= m <= 10) indicating the number of base sequences in this dataset.
    m lines each containing a single base sequence consisting of 60 bases.

    Output

    For each dataset in the input, output the longest base subsequence common to all of the given base sequences. If the longest common subsequence is less than three bases in length, display the string "no significant commonalities" instead. If multiple subsequences of the same longest length exist, output only the subsequence that comes first in alphabetical order.

    Sample Input

    3
    2
    GATACCAGATACCAGATACCAGATACCAGATACCAGATACCAGATACCAGATACCAGATA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    3
    GATACCAGATACCAGATACCAGATACCAGATACCAGATACCAGATACCAGATACCAGATA
    GATACTAGATACTAGATACTAGATACTAAAGGAAAGGGAAAAGGGGAAAAAGGGGGAAAA
    GATACCAGATACCAGATACCAGATACCAAAGGAAAGGGAAAAGGGGAAAAAGGGGGAAAA
    3
    CATCATCATCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
    ACATCATCATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AACATCATCATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
    

    Sample Output

    no significant commonalities
    AGATAC
    CATCATCAT
    
    
    以前是拿kmpA过的,现在学后缀数组,就用后缀数组再刷了一遍。稍微修改了一下后缀排序,代码变短,速度还快了。
    
    
    思路:把每个字符串接起来,之间用不同的且没有出现的字符隔开,然后就是和求最长出现k次重复子串一样的方法一样了,判断它是否在每个原串中都出现过即可。
    
    
    
    
    
    
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int maxl=1010;
    int sa[maxl],t1[maxl],t2[maxl],rank[maxl],h[maxl],sum[maxl],tot,n,t,st,ans,stp;
    char s[maxl];
    
    void clear(){
    	ans=0,memset(sa,0,sizeof(0));memset(rank,0,sizeof(rank));memset(h,0,sizeof(h)); memset(t1,0,sizeof(t1));memset(t2,0,sizeof(t2));memset(sum,0,sizeof(sum));
    }
    
    void getsa(){
    	int *x=t1,*y=t2,p=0,m=255;
    	for (int i=1;i<=n;i++) sum[x[i]=s[i]]++;
    	for (int i=1;i<=m;i++) sum[i]+=sum[i-1];
    	for (int i=1;i<=n;i++) sa[sum[x[i]]--]=i;
    	for (int j=1;p<n;j<<=1,m=p){p=0;
    
    		for (int i=n-j+1;i<=n;i++) y[++p]=i;
    		for (int i=1;i<=n;i++) if (sa[i]>j) y[++p]=sa[i]-j;
    		memset(sum,0,sizeof(sum));
    		for (int i=1;i<=n;i++) sum[x[y[i]]]++;
    		for (int i=1;i<=m;i++) sum[i]+=sum[i-1];
    		for (int i=n;i;i--) sa[sum[x[y[i]]]--]=y[i];
    		swap(x,y);x[sa[1]]=p=1;
    		for (int i=2;i<=n;i++) {
    			if (y[sa[i]]!=y[sa[i-1]]||y[sa[i]+j]!=y[sa[i-1]+j]) p++;
    			x[sa[i]]=p;
    		}
    	}
    	memcpy(rank,x,sizeof(rank));
    }
    
    void geth(){
    	for (int i=1,j=0;i<=n;i++){
    		if (rank[i]==1) continue;
    
    		while (s[i+j]==s[sa[rank[i]-1]+j]) j++;
    		h[rank[i]]=j;
    		if (j) j--; 
    	}
    }
    
    bool check(int lim){
    	bool flag[15];memset(flag,0,sizeof(flag));
    	int cnt=0,st=sa[1];
    	for (int i=2;i<=n;i++){
    		if (h[i]>=lim){
    			if (!flag[sa[i]/61+1]){
    				flag[sa[i]/61+1]=true;
    				cnt++;
    			}
    			if (!flag[sa[i-1]/61+1]){
    				flag[sa[i-1]/61+1]=true;
    				cnt++;
    			}
    			if (cnt==tot){
    
    				stp=st;
    				return true;
    			}
    		}
    		else{
    			memset(flag,0,sizeof(flag));cnt=0;st=sa[i];
    		}
    	}
    	return false;
    }
    
    bool bs(){
    	int l=3,r=61,mid=(l+r)>>1;
    	while (l<=r){
    		if (check(mid)){ans=mid,l=mid+1;}
    		else r=mid-1;
    		mid=(l+r)>>1;
    	}
    	return ans;
    }
    
    int main(){
    	scanf("%d",&t);
    	while (t--){
    		clear();
    		scanf("%d",&tot);
    		st=1;
    		for (int i=1;i<=tot;i++){
    			scanf("%s",s+st);
    			st+=60,s[st++]=i;
    		}
    		s[st--]=0;
    
    		n=strlen(s+1);
    		//printf("%d
    ",n);
    		//printf("%s
    ",s+1);
    		getsa(),geth();

    //for (int i=1;i<=n;i++) printf("%d ",h[i]);puts("");if (!bs()) printf("no significant commonalities ");else{for (int i=stp;i<=stp+ans-1;i++) putchar(s[i]);puts("");}}fclose(stdout);// for (;;);return 0;}

  • 相关阅读:
    将同一个应用程序同时作为 http 和 https
    将数组元素划分为等长的块(二维数组)
    将数组中的空元素转为 undefined
    将某个类型断言为另一个与之毫无关系的类型
    将前端代码放入 Egg 项目中
    将根组件挂载到 DOM 节点上
    将类数组对象转换成数组
    将 ts 代码转成 js 代码
    将代码推迟到系统资源空闲时执行
    React 将 state 传给子组件用
  • 原文地址:https://www.cnblogs.com/thythy/p/5493604.html
Copyright © 2020-2023  润新知