• 极几何中的基本矩阵与极限约束


    1. 拍摄左右视图

    2. SIFT检测keypoints(关键点)

    3. KNN 查找匹配关键点

    4. 筛选关键点对

    5. 利用至少8对关键点进行基本矩阵F的计算

    6. 利用x‘’.T * F * x = 0求任意点x=(x, y, 1)在另一个视图上的极线(a, b, c) * (x, y, 1) = 0

    7. 将x的横坐标带入计算求得在另一个视图上的所有候选匹配点。

    8. 匹配,计算代价误差

    9. 根据横坐标差值计算深度

    10. Finished.

    附上1-7步骤的python代码。

    import cv2
    import numpy as np
    from matplotlib import pyplot as plt
    from PIL import Image
    import glob
    import tensorflow as tf
    
    
    def to_uint8(data):
        # maximum pixel
        latch = np.zeros_like(data)
        latch[:] = 255
        # minimum pixel
        zeros = np.zeros_like(data)
    
        # unrolled to illustrate steps
        d = np.maximum(zeros, data)
        d = np.minimum(latch, d)
    
        # cast to uint8
        return np.asarray(d, dtype="uint8")
    
    
    # x is the point form right view
    # F is the fundamental matrix
    # return the corresponding epilines in the left view
    def find_epiline(x, F):
        return (F.T.dot(x.T)).T
    
    
    # x is the position of pixel to search of
    # L is the epiline
    def find_point(x, L):
        assert np.abs(L[1]) > 0
        return (int(x), int((1.0/L[1]) * (-L[2] - L[0] * x)))
    
    
    # to find all candidates in the left view to match the point in the right
    # im : the left view
    # p: the pixel in the right view
    # r: the search range
    # F: the fundamental matrix
    def find_candidates(p, r, F):
        L = find_epiline(p, F)
        cand = []
        for i in range(-r, r):
            cand.append(find_point(p[0] + i, L))
        return cand
    
    
    def BGR2RGB(bgr):
        return np.stack([bgr[:, :, 2], bgr[:, :, 1], bgr[:, :, 0]], axis=2)
    
    
    def resize_image(input_, ratio_):
        dim_expanded = False
        if len(input_.shape)==2:
            input_ = np.expand_dims(np.expand_dims(input_, axis=0), axis=3)
            dim_expanded = True
        elif len(input_.shape)==3:
            input_ = np.expand_dims(input_, axis=0)
        t_input = tf.placeholder(dtype=tf.float32, shape=input_.shape)
        if ratio_ > 0:
            t_output = tf.image.resize_bilinear(t_input, size=[input_.shape[1] * ratio_, input_.shape[2] * ratio_])
        else:
            t_output = tf.nn.avg_pool(t_input, (1, -ratio_, -ratio_, 1), (1, -ratio_, -ratio_, 1), 'VALID')
        sess = tf.Session()
        output_ = sess.run(t_output, feed_dict={t_input: input_})
        if input_.dtype == np.uint8:
            output_ = np.uint8(output_)
        if dim_expanded:
            return output_[0, :, :, 0]
        else:
            return output_[0, :, :, :]
    
    
    #dir_ = 'F:/WorkFiles/BackgroundBlur/2.TCLStereoDepthAlg-Final/2.TCLStereoDepthAlg/TCLStereoDepthAlg/test0104/phone2'
    dir_ = 'F:/WorkFiles/BackgroundBlur/Test-3-19'
    
    views_left = glob.glob(dir_ + '/*aux_dump.jpg')
    views_right = glob.glob(dir_ + '/*main_dump.jpg')
    
    assert len(views_left) == len(views_right)
    
    # img1 = to_uint8(cv2.pyrDown(cv2.imread(views_left[0], cv2.COLOR_BGR2GRAY)))
    # img2 = to_uint8(cv2.pyrDown(cv2.imread(views_right[0], cv2.COLOR_BGR2GRAY)))
    
    img1 = to_uint8(cv2.imread(views_left[0], cv2.COLOR_BGR2GRAY))
    img2 = to_uint8(cv2.imread(views_right[0], cv2.COLOR_BGR2GRAY))
    
    img1 = resize_image(img1, -3)
    img2 = resize_image(img2, -8)
    
    sift = cv2.xfeatures2d.SIFT_create()
    
    # find the keypoints and descriptors with SIFT
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)
    
    # FLANN parameters
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    search_params = dict(checks=50)
    
    flann = cv2.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des1, des2, k=2)
    
    good = []
    pts1 = []
    pts2 = []
    
    # ratio test as per Lowe's paper
    for i, (m, n) in enumerate(matches):
        if m.distance < 0.3 * n.distance:
            good.append(m)
            pts2.append(kp2[m.trainIdx].pt)
            pts1.append(kp1[m.queryIdx].pt)
    
    pts1 = np.int32(pts1)
    pts2 = np.int32(pts2)
    F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_LMEDS)
    
    # visualize the keypoints on both images
    r = 1
    img1 = BGR2RGB(img1)
    for p in pts1:
        x, y= p[0], p[1]
        img1[y-r:y+r+1, x-r:x+r+1, 0] = 200
        img1[y-r:y+r+1, x-r:x+r+1, 1] = 0
        img1[y-r:y+r+1, x-r:x+r+1, 2] = 0
    Image.fromarray(img1).show()
    
    img2 = BGR2RGB(img2)
    for p in pts2:
        x, y= p[0], p[1]
        img2[y-r:y+r+1, x-r:x+r+1, 0] = 200
        img2[y-r:y+r+1, x-r:x+r+1, 1] = 0
        img2[y-r:y+r+1, x-r:x+r+1, 2] = 0
    Image.fromarray(img2).show()
    
    exit(0)
    
    n = len(views_left)
    for i in range(5):
        img1 = to_uint8(cv2.imread(views_left[i], cv2.COLOR_BGR2GRAY))
        img2 = to_uint8(cv2.imread(views_right[i], cv2.COLOR_BGR2GRAY))
    
        img1 = resize_image(img1, -3)
        img2 = resize_image(img2, -8)
    
        # use the F to search for matched points
        y = 50
        x = 100
        h, w = img2.shape[0], img2.shape[1]
        p = np.array([x, y, 1.0])
        # lines1 = cv2.computeCorrespondEpilines(np.array([[x, y]]), 2, F)
        # print(lines1)
        # lines = find_epiline(p, F)
        # print(lines1[0]/lines)
        candidates = find_candidates(p, 200, F)
        #print(candidates)
    
        r = 1
        img2 = BGR2RGB(img2)
        img2[y-r:y+r+1, x-r:x+r+1, 0] = 200
        img2[y-r:y+r+1, x-r:x+r+1, 1] = 0
        img2[y-r:y+r+1, x-r:x+r+1, 2] = 0
        Image.fromarray(img2).show()
    
        img1 = BGR2RGB(img1)
        for c in candidates:
            if c[0] >=0 and c[0] < h and c[1] >= 0 and c[1] < w:
                img1[c[1], c[0], 0] = 200
                img1[c[1], c[0], 1] = 0
                img1[c[1], c[0], 2] = 0
        Image.fromarray(img1).show()
  • 相关阅读:
    【必备】史上最全的浏览器 CSS & JS Hack 手册(转)
    iScroll4.2.5中的无法滑动或点击的解决方案(转)
    无障碍网页设计(WCAG2.0)
    大小端
    TCP报文结构
    A*
    shell中uniq与sort -u 两种去重的对别
    login流程
    类模板成员函数
    game 角色相关记录
  • 原文地址:https://www.cnblogs.com/thisisajoke/p/10676187.html
Copyright © 2020-2023  润新知