• win7+cuda+anaconda python+tensorflow-gpu+keras安装成功版本匹配汇总


    win7+cuda+anaconda python+tensorflow-gpu+keras安装成功版本匹配汇总

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
    本文链接:https://blog.csdn.net/wyx100/article/details/101061064

     

    大家在安装配置过程中遇到了很多坑,其中大部分和软件之间的版本兼容性有关,在此,列出了不同软件版本之间的配置兼容性,方便安装配置。

    https://github.com/fo40225/tensorflow-windows-wheel

    PathCompilerCUDA/cuDNNSIMDNotes
    1.14.0py37CPUsse2 VS2019 16.1 No x86_64 Python 3.7
    1.14.0py37CPUavx2 VS2019 16.1 No AVX2 Python 3.7
    1.14.0py37GPUcuda101cudnn76sse2 VS2019 16.1 10.1.168_425.25/7.6.0.64 x86_64 Python 3.7/Compute 3.0
    1.14.0py37GPUcuda101cudnn76avx2 VS2019 16.1 10.1.168_425.25/7.6.0.64 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
    1.13.1py37CPUsse2 VS2017 15.9 No x86_64 Python 3.7
    1.13.1py37CPUavx2 VS2017 15.9 No AVX2 Python 3.7
    1.13.1py37GPUcuda101cudnn75sse2 VS2017 15.9 10.1.105_418.96/7.5.0.56 x86_64 Python 3.7/Compute 3.0
    1.13.1py37GPUcuda101cudnn75avx2 VS2017 15.9 10.1.105_418.96/7.5.0.56 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
    1.12.0py36CPUsse2 VS2017 15.8 No x86_64 Python 3.6
    1.12.0py36CPUavx2 VS2017 15.8 No AVX2 Python 3.6
    1.12.0py36GPUcuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.1.20 x86_64 Python 3.6/Compute 3.0
    1.12.0py36GPUcuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.1.20 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
    1.12.0py37CPUsse2 VS2017 15.8 No x86_64 Python 3.7
    1.12.0py37CPUavx2 VS2017 15.8 No AVX2 Python 3.7
    1.12.0py37GPUcuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.1.20 x86_64 Python 3.7/Compute 3.0
    1.12.0py37GPUcuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.1.20 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
    1.11.0py36CPUsse2 VS2017 15.8 No x86_64 Python 3.6
    1.11.0py36CPUavx2 VS2017 15.8 No AVX2 Python 3.6
    1.11.0py36GPUcuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.0.29 x86_64 Python 3.6/Compute 3.0
    1.11.0py36GPUcuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.0.29 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
    1.11.0py37CPUsse2 VS2017 15.8 No x86_64 Python 3.7
    1.11.0py37CPUavx2 VS2017 15.8 No AVX2 Python 3.7
    1.11.0py37GPUcuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.0.29 x86_64 Python 3.7/Compute 3.0
    1.11.0py37GPUcuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.0.29 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
    1.10.0py36CPUsse2 VS2017 15.8 No x86_64 Python 3.6
    1.10.0py36CPUavx2 VS2017 15.8 No AVX2 Python 3.6
    1.10.0py36GPUcuda92cudnn72sse2 VS2017 15.8 9.2.148.1/7.2.1.38 x86_64 Python 3.6/Compute 3.0
    1.10.0py36GPUcuda92cudnn72avx2 VS2017 15.8 9.2.148.1/7.2.1.38 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.10.0py27CPUsse2 VS2017 15.8 No x86_64 Python 2.7
    1.10.0py27CPUavx2 VS2017 15.8 No AVX2 Python 2.7
    1.10.0py27GPUcuda92cudnn72sse2 VS2017 15.8 9.2.148.1/7.2.1.38 x86_64 Python 2.7/Compute 3.0
    1.10.0py27GPUcuda92cudnn72avx2 VS2017 15.8 9.2.148.1/7.2.1.38 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.9.0py36CPUsse2 VS2017 15.7 No x86_64 Python 3.6
    1.9.0py36CPUavx2 VS2017 15.7 No AVX2 Python 3.6
    1.9.0py36GPUcuda92cudnn71sse2 VS2017 15.7 9.2.148/7.1.4 x86_64 Python 3.6/Compute 3.0
    1.9.0py36GPUcuda92cudnn71avx2 VS2017 15.7 9.2.148/7.1.4 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.9.0py27CPUsse2 VS2017 15.7 No x86_64 Python 2.7
    1.9.0py27CPUavx2 VS2017 15.7 No AVX2 Python 2.7
    1.9.0py27GPUcuda92cudnn71sse2 VS2017 15.7 9.2.148/7.1.4 x86_64 Python 2.7/Compute 3.0
    1.9.0py27GPUcuda92cudnn71avx2 VS2017 15.7 9.2.148/7.1.4 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.8.0py36CPUsse2 VS2017 15.4 No x86_64 Python 3.6
    1.8.0py36CPUavx2 VS2017 15.4 No AVX2 Python 3.6
    1.8.0py36GPUcuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.3 x86_64 Python 3.6/Compute 3.0
    1.8.0py36GPUcuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.3 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.8.0py27CPUsse2 VS2017 15.4 No x86_64 Python 2.7
    1.8.0py27CPUavx2 VS2017 15.4 No AVX2 Python 2.7
    1.8.0py27GPUcuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.3 x86_64 Python 2.7/Compute 3.0
    1.8.0py27GPUcuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.3 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.7.0py36CPUsse2 VS2017 15.4 No x86_64 Python 3.6
    1.7.0py36CPUavx2 VS2017 15.4 No AVX2 Python 3.6
    1.7.0py36GPUcuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.2 x86_64 Python 3.6/Compute 3.0
    1.7.0py36GPUcuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.2 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.7.0py27CPUsse2 VS2017 15.4 No x86_64 Python 2.7
    1.7.0py27CPUavx2 VS2017 15.4 No AVX2 Python 2.7
    1.7.0py27GPUcuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.2 x86_64 Python 2.7/Compute 3.0
    1.7.0py27GPUcuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.2 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.6.0py36CPUsse2 VS2017 15.4 No x86_64 Python 3.6
    1.6.0py36CPUavx2 VS2017 15.4 No AVX2 Python 3.6
    1.6.0py36GPUcuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.1 x86_64 Python 3.6/Compute 3.0
    1.6.0py36GPUcuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.1 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.6.0py27CPUsse2 VS2017 15.4 No x86_64 Python 2.7
    1.6.0py27CPUavx2 VS2017 15.4 No AVX2 Python 2.7
    1.6.0py27GPUcuda91cudnn71sse2 VS2017 15.4 9.1.85.2/7.1.1 x86_64 Python 2.7/Compute 3.0
    1.6.0py27GPUcuda91cudnn71avx2 VS2017 15.4 9.1.85.2/7.1.1 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.5.0py36CPUavx VS2017 15.4 No AVX Python 3.6
    1.5.0py36CPUavx2 VS2017 15.4 No AVX2 Python 3.6
    1.5.0py36GPUcuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.5.0py27CPUsse2 VS2017 15.4 No x86_64 Python 2.7
    1.5.0py27CPUavx VS2017 15.4 No AVX Python 2.7
    1.5.0py27CPUavx2 VS2017 15.4 No AVX2 Python 2.7
    1.5.0py27GPUcuda91cudnn7sse2 VS2017 15.4 9.1.85/7.0.5 x86_64 Python 2.7/Compute 3.0
    1.5.0py27GPUcuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.4.0py36CPUavx VS2017 15.4 No AVX Python 3.6
    1.4.0py36CPUavx2 VS2017 15.4 No AVX2 Python 3.6
    1.4.0py36GPUcuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
    1.3.0py36CPUavx VS2015 Update 3 No AVX Python 3.6
    1.3.0py36CPUavx2 VS2015 Update 3 No AVX2 Python 3.6
    1.3.0py36GPUcuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
    1.2.1py36CPUavx VS2015 Update 3 No AVX Python 3.6
    1.2.1py36CPUavx2 VS2015 Update 3 No AVX2 Python 3.6
    1.2.1py36GPUcuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
    1.1.0py36CPUavx VS2015 Update 3 No AVX Python 3.6
    1.1.0py36CPUavx2 VS2015 Update 3 No AVX2 Python 3.6
    1.1.0py36GPUcuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
    1.0.0py36CPUsse2 VS2015 Update 3 No x86_64 Python 3.6
    1.0.0py36CPUavx VS2015 Update 3 No AVX Python 3.6
    1.0.0py36CPUavx2 VS2015 Update 3 No AVX2 Python 3.6
    1.0.0py36GPUcuda8cudnn51sse2 VS2015 Update 3 8.0.61.2/5.1.10 x86_64 Python 3.6/Compute 3.0
    1.0.0py36GPUcuda8cudnn51avx2 VS2015 Update 3 8.0.61.2/5.1.10 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
    0.12.0py35CPUavx VS2015 Update 3 No AVX Python 3.5
    0.12.0py35CPUavx2 VS2015 Update 3 No AVX2 Python 3.5
    0.12.0py35GPUcuda8cudnn51avx2 VS2015 Update 3 8.0.61.2/5.1.10 AVX2 Python 3.5/Compute 3.0,3.5,5.0,5.2,6.1

    tensorflow CUDA cudnn 版本对应关系

    https://blog.csdn.net/yuejisuo1948/article/details/81043962

    linux下:

    windows下:

    上面两张图是在这里找到的:https://tensorflow.google.cn/install/source  (右上角language选English)

    tensorflow和keras版本搭配

    https://docs.floydhub.com/guides/environments/


     

    anaconda python 版本对应关系

    https://blog.csdn.net/yuejisuo1948/article/details/81043823


    本文链接:https://blog.csdn.net/yuejisuo1948/article/details/81043823


     

    首先解释一下上表。 anaconda在每次发布新版本的时候都会给python3和python2都发布一个包,版本号是一样的。

    表格中,python版本号下方的离它最近的anaconda包就是包含它的版本。

    举个例子,假设你想安装python2.7.14,在表格中找到它,它下方的三个anaconda包(anaconda2-5.0.1、5.1.0、5.2.0)都包含python2.7.14;

    假设你想安装python3.6.5,在表格中找到它,它下方的anaconda3-5.2.0就是你需要下载的包;

    假设你想安装python3.7.0,在表格中找到它,它下方的anaconda3-5.3.0或5.3.1就是你需要下载的包;

    镜像下载地址:清华镜像源

    官方下载地址:https://repo.anaconda.com/archive/
     

    https://blog.csdn.net/stephen_2018/article/details/80392545

    win7 vs2015 cuda9.0 安装 Tensorflow-gpu 1.8

    cuda_9.0.176_windows.exe

    cudnn-9.0-windows7-x64-v7.zip

    python-3.5.4-amd64.exe

    https://blog.csdn.net/ei1990/article/details/84800151

    WIN7系统安装 tensorflow1.6.0 + CUDA9.0 + cudnn7 版本

    Anaconda3   5.2.0

    CUDA9.0 + cudnn7 (9.1版本不支持tensorflow)

    tensorflow-gpu 1.6.0

    https://blog.csdn.net/Zqinstarking/article/details/80713338

    防坑 centos7 安装 CUDA9.0 + cudnn7.1 +TensorFlow GPU版1.6.0/1.8.0

    简单来说:tf1.5及以上用只能是cuda9.0,其他的tf1.4及以下版本就是cuda8.0等,最好自己去查查!可恶的是tf官方和nVidia都没有版本对应的说明!!!

    https://blog.csdn.net/wukongabc_123/article/details/80379882

    Windows 7下安装TensorFlow1.6(cuda9.0+cuDNN 7.0+python3.5+pip9)

    https://blog.csdn.net/duoker/article/details/79483434

    win7 x64 安装 TensorFlow1.6 CUDA 9.1+cuDNN7.1( 7.0.5)+python3.6 (python 3.5.2)

    https://blog.csdn.net/wukongabc_123/article/details/80379882

    win7+anaconda3+cuda9.0+CuDNN7+tensorflow-gpu+pycharm配置

    https://blog.csdn.net/u011440696/article/details/79381375

    tensorflow 安装GPU版本,个人总结,步骤比较详细

    https://blog.csdn.net/gangeqian2/article/details/79358543

    TensorFlow 安装GPU版本

    https://blog.csdn.net/AAlonso/article/details/81504036

    python+tensorflow+tensorflow-gpu+CUDA+cuDNN+pycharm全套环境配置教程 推荐

    https://blog.csdn.net/kele52he/article/details/82986900

    深度学习环境搭建-CUDA9.0、cudnn7.3、tensorflow_gpu1.10的安装

    https://blog.csdn.net/xiaosa_kun/article/details/84868347

     

    win7 vs2015 cuda9.0 安装 Tensorflow-gpu 1.8

    https://blog.csdn.net/stephen_2018/article/details/80392545

     

    WIN7系统安装 tensorflow1.6.0 + CUDA9.0 + cudnn7 版本

    https://blog.csdn.net/ei1990/article/details/84800151

    https://blog.csdn.net/weixin_42071277/article/details/88851868

    Windows 7下安装TensorFlow1.6(cuda9.0+cuDNN 7.0+python3.5+pip9)

    https://blog.csdn.net/duoker/article/details/79483434

    匹配tensorflow-gpu和keras:

         tensorflow 1.5 和keras 2.1.3、keras 2.1.4、keras 2.3.0(运行代码会报错)

         tensorflow 1.4和keras 2.1.3

         tensorflow 1.3和keras 2.1.2

         tensorflow  1.2和keras 2.1.1

  • 相关阅读:
    中国VR公司的详尽名单
    maven打包源代码sources.jar和javadoc.jar帮助文档
    中国计算机学会推荐国际学术刊物
    myhuiban会议,期刊,科研人员,计算机类会议大全
    如何写mysql的定时任务
    mysql系列命令解释
    Bootstrap 导航元素
    base64对文件进行加密
    我最在行 诗词 连续错误的
    <% %> in html
  • 原文地址:https://www.cnblogs.com/think90/p/11655702.html
Copyright © 2020-2023  润新知