• GAN——ModeCollapse


    GAN——ModeCollapse

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
    本文链接:https://blog.csdn.net/SPARKKKK/article/details/72598041

    大部分内容来源于李宏毅的课程[1]

    Example

    先给一个直观的例子,这个是在我们训练GAN的时候经常出现的 

    这就是所谓的Mode Collapse

    但是实际中ModeCollapse不能像这个一样这么容易被发现(sample中出现完全一模一样的图片)

    例如训练集有很多种类别(如猫狗牛羊),但是我们只能生成狗(或猫或牛或羊),虽然生成的狗的图片质量特别好,但是!整个G就只能生成狗,根本没法生成猫牛羊,陷入一种训练结果不好的状态。这和我们对GAN的预期是相悖的。

    Analysis

    如上图。PdataPdata是八个高斯分布的点,也就是8个mode。 
    我们希望给定一个随机高斯分布(中间列中的最左图),我们希望这一个随机高斯分布经过G最后可以映射到这8个高斯分布的mode上面去 
    但是最下面一列的图表明,我们不能映射到这8个高斯分布的mode上面,整个G只能生成同一个mode,由于G和D的对抗关系,G不断切换mode

    李宏毅原话:

    • 在step10k的时候,G的位置在某一个 Gaussian所在位置,然后D发现G只是在这个Gaussian这里了,所以就把这个地方的所有data(无论real还是fake)都给判定为fake
    • G发现在这个Gaussian待不下去了,只会被D永远判定为fake,所以就想着换到另一个地方。在step15k就跳到了另一个Gaussian上去
    • 然后不断跳跳跳,不断重复上述两个过程,就像猫捉老鼠的过程一样,然后就没有办法停下来,没法达到我们理想中映射到8个不同的Gaussian上面去

    对于左边的KL散度,出现无穷大的KL散度是因为PdataPdata有值而PGPG没有值 
    也就是说当我们PdataPdata有值的时候,我们必须保证PGPG也有值,这才能保证KL散度不会趋于无穷大。 
    假设我们的G的capacity不够,只能产生一个Gaussian的时候,那么这个时候的G就会倾向去覆盖所有PdataPdata存在的地方,PdataPdata有值的地方PGPG也要有。 
    当然,即使PdataPdata没有的地方,有PGPG也无所谓(毕竟这个时候KL散度趋于0,惩罚很小) 
    虽然这个时候基本上不会出现mode collapse的情况,但是会出现很多无意义的样本

    对于右边的reverse KL散度,如果出现了PGPG在某一个没有PdataPdata(Pdata0Pdata≈0)的位置产生了值,那就会使得这个reverse KL散度变得特别大。 
    所以对于在minimize KL散度这个training过程中,就会出现很高的惩罚。为了安全起见,PGPG就会更加倾向于生成同一张安全的一定会被认为是real的image,也不冒险去产生一些不一样的image 
    而由于我们这里假设PGPG只是一个单一的Gaussian而不是多个Gaussian叠加(如图中的PdataPdata),所以就会趋向于去完全拟合其中一个真实的Gaussian,这样就出现了mode collapse

    Reference

    [1]Youtube-MLDS Lecture 9: Generative Adversarial Network 
    [2]知乎专栏——令人拍案叫绝的Wasserstein GAN

  • 相关阅读:
    C++——模板、数组类
    JSP教程(四)—— JSP内置对象(上)
    JSP教程(三)—— 基本语法
    JSP教程(二)—— JavaWeb简介
    JSP教程(一)—— JavaWeb开发环境
    关于余弦定理的一些见解
    文本相似度比较(网页版)
    关于SimHash算法的实现及测试V4.0
    关于SimHash算法的实现及测试V3.0
    关于SimHash算法的实现及测试V2.0
  • 原文地址:https://www.cnblogs.com/think90/p/11523190.html
Copyright © 2020-2023  润新知