CF1194D 1-2-K Game
一道简单的博弈论题
首先让我们考虑没有k的情况:
1. (n mod 3 =0)
因为n可以被分解成若干个3相加
而每个3可以被分解为1+2或2+1
所以无论A出什么B都有方法应对
B胜
2. (n mod 3 =1)
A可以先选择余数1
这样问题又回到了第一种情况
AB角色互换
A胜
3. (n mod 3 =2)
与2同理,A先选2即胜
而现在多出来的这个k也可以看成是3的某个自然数倍数加上一个小于3的数
即(kequiv xleft( mod3 ight))
我们再来对x分类讨论:
1. (x=0)
此时的k就好像快速地切除1+2或2+1的回合
但对手总不会站着不动吧?
我们知道B总是有方法使每一回合内(A+B)%3都等于1的
列举一下(k用3代替):
A:1 B:3
A:2 B:2
A:3 B:1
是不是每回合在mod3意义下都是相同的?
那么若干个回合后如果无法实现上述方法了
即n%=k+1
如果n=k A获胜
否则情况又变回了无k的情况
%3判断即可
2. (x=1)
此时k就好像有着能省略若干个回合功能的1
k就可有可无了
又回到了无k的情况
3. (x=2)
与2同理
知道了这些,代码就很好写了:
int n,k,t;
signed main(){
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
if(k%3){
if(n%3) puts("Alice");
else puts("Bob");
}
else{
n%=k+1;
if(n==k||n%3) puts("Alice");
else puts("Bob");
}
}
}